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Abstract 

 
Teardowns provide direct information on land values in fully developed urban areas 
because such properties are valued only for their land and location rather than for the 
characteristics of the structure.  Stein-like procedures make efficient use of limited data 
when a group of variables – the structural characteristics – are expected beforehand to 
provide little explanatory power.  Using data from Chicago for 1995-2003, this study 
shows how Stein-like rules based on both standard OLS regressions and two-stage 
selection models can be used to improve land value estimation.  
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Teardowns and Hedonic Land Value Function  

Estimation using Non-Sample Information 
 

 
1. Introduction 

 
Land values are a critical component of urban economic theory.  As developed by Alonso 
(1964), Muth (1969), and Mills (1972), the standard monocentric city model implies that 
the value of access to the workplace is capitalized directly into land values.   Land values 
guide the conversion of land from agriculture to use, the redevelopment of urban land to 
alternative uses, and the timing of land developments (Braid, 2001; Brueckner, 1980; 
Wheaton, 1982).  Restrictive zoning practices can lead to sharp increases in land values 
in jurisdictions where land becomes difficult to develop.  Studies such as Cheshire and 
Sheppard (2002) and Glaeser, Gyourko, and Saks (2005) make use of land values to 
measure the extent to which zoning alters market outcomes.  Though accurate measures 
of land values are necessary to test many of the implications of urban economic theory, a 
lack of good data sources for land values has led empirical researchers to devote more 
attention to testing the models’ implications for such variables as population density and 
house prices. 
 
The ability to measure land values accurately also has immense practical importance.  In 
many jurisdictions, assessors are required to provide separate assessments for structures 
and land.  Differential tax rates for land and structures have been proposed since the time 
of Henry George, and have been employed in Pennsylvania with some success (Oates and 
Schwab, 1997).  Since the supply of land is close to perfectly inelastic, a land tax could 
potentially be an attractive substitute for a more conventional property tax (England, 
2003).  Successful implementation of a land tax has been impeded by doubts concerning 
the accuracy of current assessment practices for land values. 
 
Land values are difficult to measure in urban areas in part because vacant land sales are 
not common.  Sales of vacant land are often concentrated in a small number of places and 
may be unrepresentative of the overall market.  Nevertheless, many researchers have used 
vacant land sales to estimate land values in urban areas.  Examples include Colwell and 
Munneke (1997), Thorsnes (1997), Cunningham (2006), and Ihlanfeldt (2007).  Other 
researchers have attempted to use sales prices of developed properties to estimate land 
values.  After controlling for the effects of structural characteristics, land value is treated 
either as a residual or is estimated directly from the coefficients for land area and various 
location characteristics (e.g., Jackson, Johnson, and Kaserman, 1984; Cheshire and 
Sheppard, 1995; Glaeser, Gyourko, and Saks, 2005). 
 
Land values are difficult to estimate accurately using hedonic price functions because it is 
impossible to control completely for the myriad characteristics that influence a property’s 
sales price.  Consider the difficult to measure but critical structural characteristic, quality.  
Well-built, high-quality properties will tend to be concentrated in expensive 
neighborhoods with high-priced land.  Although variables such as building area and the 
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presence of pools and multi-car garages are correlated with structural quality, the list of 
measurable variables will always be incomplete.  Since quality is correlated with land 
value, some of the effects of these variables will be attributed to the value of land.  
Hedonic estimates of land value will tend to be biased upward in desirable areas when 
this critical variable is missing. 
 
Teardowns – properties that are demolished shortly after being purchased – offer another 
attractive data source for estimating land values in built-up urban areas.  As noted by 
Rosenthal and Helsley (1994), the value of a teardown property is approximately equal to 
the value of the land on which it rests plus any demolition costs.  Since demolition costs 
comprise a very small percentage of sales prices in areas where teardowns are common, 
teardowns can be a very useful tool for estimating land values in areas where vacant land 
is uncommon.  Teardowns have been used to estimate land values in studies by Rosenthal 
and Helsley (1994), Munneke (1996), McGrath (2000), and Dye and McMillen (2007).   
An important implication of Rosenthal and Helsley’s (1994) model is that only 
characteristics of the location should influence the sales price of teardown properties; 
structural characteristics should have little or no explanatory power.  Dye and McMillen 
(2007) provide strong empirical support for this prediction.  Missing structural variables 
do not result in biased coefficient estimates if they do not influence. 
 
Although teardowns are more common in many cities than vacant land transactions, they 
are rarely as common as more conventional sales even in very active teardown markets.  
Relatively small samples increase the returns to efficient data use.  Knight, Hill, and 
Sirmans (1993) propose a simple estimator that is nearly ideally suited to estimating land 
values using teardown properties.  The idea is intuitive:  if it is true that structural 
characteristics do not influence sales prices, then a regression estimate with these 
variables omitted should provide nearly the same explanatory power as an unrestricted 
regression that includes the structural variables.  In practice, additional explanatory 
variables always provide some explanatory power even when the coefficients are 
statistically insignificant.  Knight, Hill, and Sirmans show that a simple weighted average 
of the restricted and unrestricted estimates produces an estimator with such low variance 
that the estimates have lower mean squared errors in Monte Carlo experiments than 
simple OLS estimates even when some of the restrictions are actually false.  This use of 
non-sample information – the theoretical prediction that structural characteristics have no 
effect on the sales prices of teardown properties – leads to little bias and much lower 
variance for the location variable coefficients.   
 
Knight, Hill, and Sirmans refer to their formula for combining the restricted and 
unrestricted estimates as a “Stein-like” rule since it is an extension of Stein’s (1956) 
estimator for the means of variables drawn from a multivariate normal distribution.  The 
weights depend on the number of variables that are omitted to form the restricted 
regression and the value of the F-test used to determine whether the restrictions are 
actually at odds with the data.  Higher values of the F-test lead to more weight being 
placed on the unrestricted estimates.  This procedure works well in a standard regression 
context.  However, there is strong reason to suspect that selection bias may affect simple 
regression estimates since teardown properties may not be drawn randomly from the full 
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sample of properties.  A modified version of the rule is needed that takes the sample 
selection rule into account.   
 
Kim and Hill’s (1995) analysis of a Box-Cox model can be adapted easily to the standard 
Heckman (1976) selection model.  The “Heckit” estimator involves a first-stage probit 
model of the probability that a property is a teardown followed by a second-stage sales 
price regression that supplements the usual set of explanatory variables with a selection 
bias correction term.  Kim and Hill’s analysis implies that a weighted average of 
restricted and unrestricted second-stage estimates will produce an estimator with low 
mean squared error than standard Heckit estimates.  The weights can be based on the log-
likelihood values from joint estimation of the probit and regression models, or more 
simply on the Wald test statistics for a test that the structural variables add no explanatory 
power in the second-stage sales price regression. 
 
While this application of the Stein approach significantly improves our ability to estimate 
land values accurately in built-up urban areas, it also has implications for other 
applications of the Heckman selection bias model.  Although the Heckit estimator is 
formally identified by the nonlinearity of the bias correction variable, researchers 
generally try to identify the model as though it were a system of linear simultaneous 
equations.  In the linear case, identification requires that some variable be omitted from 
the second-stage regression equation that is not included in the first-stage probit model.  
If a set of variables in the second-stage equation can be identified beforehand as having 
little or no influence on the dependent variable, then the Stein approach can potentially 
lead to significant reductions in the degree of variability that has plagued Heckit 
estimation. 
 
The data set for the empirical section of the paper, which is drawn from sales of 
properties from an active teardown market in Chicago for 1995-2003, is an updated 
version of the data set used in Dye and McMillen (2007).  As in the earlier paper, I find 
that structural characteristics have little influence on the sales prices of teardown 
properties.  I then compare the estimates obtained from standard OLS, Heckit, and the 
Stein-like rule versions of each.  Though the estimates of the coefficients for the location 
characteristics are similar across all four estimators, the Stein-like versions are closer to 
each other than are standard OLS and Heckit models.  With only about 400 observations 
of teardown sales, the incorporation of non-sample information helps to improve the 
accuracy of the land value estimates drawn from the teardown sample. 
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2. The Stein Rule for OLS Estimation 
  
The typical hedonic house price equation expresses the natural log of the sales price of a 
home (y) on a set of variables representing characteristics of the structure (S), location 
characteristics (L), and variables indicating the date of sale (D).  Together, the full set of 
explanatory variables is X = (1,S,L,D).  The estimating equation is given by: 
 

0i i S i L i D i i iy S L D e X e! ! ! ! !" " " "= + + + + = +    (1) 
 
A teardown property is purchased exclusively for its lot.  If demolition costs and salvage 
values are negligible, there should be no difference in the price of two adjacent properties 
on identical lots even if one has a 4000-square foot house in reasonably good condition 
while the other has a poorly maintained bungalow.  If the properties are valuable simply 
because they each have, e.g., 10,000 square foot lots in desirable locations, then we can 
expect that βS = 0 in a correctly specified equation.  The estimated value of location – 
“land value” – is simply ˆ

i LL !" , i.e, the predicted value of the location characteristics.1 
 
If the restriction βS = 0 is correct, OLS estimation of equation (1) will, of course, provide 
unbiased estimates of βL for teardown properties even though the a set of irrelevant 
variables is included in the regression.  However, the variance of the estimates may be 
large, particularly since the S and L are likely to be correlated.  For example, homes in 
areas with high land values may also tend to be small and old.  Multicollinearity makes it 
difficult to entangle the separate effects of different explanatory variables even when 
some of the variables add little explanatory power.  The restricted version of the model is 
a regression of y on L and D alone.  If the omitted structural variables include J 
explanatory variables, then the F-test for βS = 0 is based on a simple comparison of the 
residual sum of squares ( )r re e! from this restricted regression and the residual sum of 

squares ( )e e!  from the unrestricted model of equation (1).  The test statistic is: 

( )
( )

( )
/

,
/

r re e e e J
f F J n K

e e n K

! !"
= "

! "
�    (2) 

 
where n is the number of observations and K is the number of variables included in the 
unrestricted model. 
 
In the classical modeling strategy, the final estimate of the parameter vector 

( )0 L D! " " " ## #=  would be 
r
!  if the F-test fails to reject the null hypothesis and u!  if 

the F-test indicates that the structural characteristics add significant explanatory power to 
                                                
1 Cheshire and Sheppard (2002) estimate a version of this model in which the value of an additional square 
foot of lot area depends on location. Letting A indicate acreage and Z a set of indicators of location, their 
version of the model has, in effect, L = AZ.  Thus, their estimating equation includes a series of interaction 
terms between lot size and the location variables.   They refer to the marginal price of A as “land value,” 
and their specification allows this price to vary spatially.  While the approach taken here can easily be 
adapted to their specification, I will not draw a distinction between the value of land and the value of 
location. 
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the regression.  In a series of Monte Carlo experiments, Knight, Hill, and Sirmans (1993) 
show that a weighted average of the two sets of parameter estimates has much lower 
mean squared error than standard OLS estimation.  When there are at least three omitted 
variables in the restricted model ( )3J ! , their starting point for the  “Stein-like” rule 
combines the restricted and unrestricted estimates as follows: 

( )s u u r! ! " ! != # #       (3) 
 

where ( ) ( )2 2 1

2 2r r

J Je e T K

n K e e e e T K J f
!

" "# $% "# $
= =& ' & '% %" + " " + ( )( )

. In practice, they find that a 

slight variation of this estimator works better in practice.  This “positive-part variant” is  

( )1.5s u u r! ! " ! !+ = # #  if 1.5 1! "  
           (4) 

s r! !+
=  if 1.5 1! "  

 
In both versions of the rule, the weight placed on the unrestricted estimates θu increases 
with the value of the F-test statistic, f.  The more likely it appears that the restrictions are 
correct – the lower is the value of f – the more weight is given to restricted estimates, θr. 
 
Though the estimates s!  and s!

+  are biased if 0
S

! " , Knight, Hill, and Sirmans (1993) 
find that the mean squared error of these Stein estimators is much lower than the mean 
squared error for OLS even when the OLS model is correctly specified (i.e., when S is 
omitted from the regression and βs = 0).  Thus, the use of non-sample information – our 
expectation that the structural characteristics add little or no explanatory power to the 
hedonic price functions for teardown properties – allows us to construct estimates that 
have small bias and lower variance than standard OLS estimates.  
 
Bootstrap procedures must be used to construct confidence intervals for s!  or s!

+ .  In the 
empirical section of the paper, I use a simple bootstrap resampling procedure, drawing N 
combinations of yi and Xi with replacement from the original matrices of values for the 
dependent variable and the explanatory variables.  After 1000 repetitions of this 
resampling procedure, the bootstrap standard error estimates are simply the standard 
deviations of the 1000 new estimates of s!  or s!

+ .   
 

3. A Stein-Like Rule for the Selection Bias Model 
 
Selection bias is a potential concern in a study of teardowns because such properties are 
unlikely to be drawn randomly from the population of housing sales.  For example, 
teardowns may be drawn from unusually low-quality structures in rapidly growing areas 
with high land values.  The fact that the structures are of a lower quality than the 
population should cause little bias because structural characteristics – whether observed 
or relegated to the error term – will have little effect on sales prices.  Unobserved location 
characteristics that make a property more likely to be a teardown are also likely to lead to 
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high sales prices.  To control for this form of selection bias, previous research (Rosenthal 
and Helsley, 1994; Munneke, 1996; McGrath, 2000; Dye and McMillen, 2007) has used 
the Heckman (1976) two-stage estimator.  The first stage is a probit model predicting the 
probability that a property is a teardown as a function of a set of a set of explanatory 
variables, Z.  The predicted probability, ( )ˆZ !"# , is then used to form the selection bias 

correction variables, which are given by ( ) ( )ˆ ˆ/Z Z! " "# #$  for the teardown sample and 

( ) ( )( )ˆ ˆ/ 1Z Z! " "# #$ $%  for the non-teardown sample. 
 
The Stein-rule approach’s efficiency gain may have even more benefit for the selection 
model because the two-stage estimates are frequently found to be highly variable and 
sensitive to the model specification.  It is difficult to find variables to include in the probit 
model that cannot also plausibly be considered for the second-stage regression.  A Stein-
like estimator may reduce the variability of the two-stage estimator if a list of variables 
can be specified that can reasonably be expected beforehand to have little predictive 
power in the second-stage regression estimates.  In the case of teardowns, this non-
sample information is readily available as the structural characteristics are predicted to 
have no explanatory power for sales prices.  The Stein approach’s reduction in variability 
is particularly important in a model of teardowns because it allows the limited number of 
observations to be used more efficiently to estimate the land values. 
 
Kim and Hill (1995) develop a Stein-like rule for a nonlinear regression model that is 
based on a weighted average of restricted and unrestricted estimates.  Although their 
estimator is developed in the context of a model with a Box-Cox transformation, it is 
straightforward to extend it to other models in which simple OLS regressions are 
inappropriate.  The key is to have a chi-squared distributed test statistic for the set of 
exclusion restrictions.  Wald, LaGrange multiplier, and likelihood ratio (LR) tests are all 
suitable for their estimator.  Since exclusion restrictions are probably most likely to be 
tested using a Wald test in the standard two-stage selection model, I will assume that this 
test will be used to test whether S adds significant explanatory power to the second-stage 
sales price regressions. 
 
Let µ represent the value of the Wald test statistic for a test that the structural 
characteristics add no explanatory power in the second-stage sales price regression.  As 
before, let θu and θr represent the estimated coefficients for the sales price regression 
when the structural characteristics are include (u) and excluded (r).  In the selection 
model, the vectors of estimated coefficients are expanded to include the coefficient for 
the selection bias correction variable, which is included in both the restricted and 
unrestricted regressions.  Kim and Hill (1995) find that the following weighted average of 
the two sets of coefficients produces an estimator with low mean squared error: 

( )
( )

( )
2 2

2( 2) 1
s r u r

J
I J! ! µ ! !

µ

" #$
= + < $ $ $% &

' (
   (5) 

where ( )I •  is an indicator function and, as before, J is the number of coefficients 
constrained to equal zero in the restricted model.  As in the case of OLS, this rule places 
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more weight on the unrestricted estimates the greater is the value of the test statistic for 
the exclusion restrictions, µ. 
 
In the empirical section of the paper, I use the covariance matrix estimate given in Greene 
(1981) to construct the Wald test.  I again use a bootstrap procedure to construct standard 
errors for θs.  Letting n1 represent the number of teardown properties and n2 the number 
of non-teardowns, each iteration of the bootstrap involves drawing n1 combinations of yi 
and Xi with replacement from the teardown sample and n2 combinations with replacement 
from the non-teardown sample.  I then re-estimate the full model – probit, second-stage 
sales price regressions, Wald tests, and the Stein-like rule of equitation (5) – for each 
bootstrap sample.  The standard errors for θs are then simply the standard deviations of 
the 1000 new estimates of s! . 
 

4. Data and Model Specification 
 
The data set for the empirical analysis is drawn from three sources.  Data for the sales 
price of small (1-6 unit) properties come from the Illinois Department of Revenue 
(IDOR).  The IDOR data were then merged with the Cook County Assessor’s file of 
property characteristics for 1997.  This file includes data on standard explanatory 
variables for hedonic prices functions – age, square footage, and lot size; the presence of 
a basement, a fireplace, brick construction, a one-car garage, a larger garage; and 
indicators that the basement is finished, the garage is attached to the home, and that the 
home has 2-6 units rather than only one.  Finally, demolition permit data were obtained 
from the City of Chicago to determine whether a property is a teardown.  The data were 
then geo-coded to identify the neighborhood and ward for the property and to measure 
distance to Lake Michigan, the nearest stop on the elevated rapid transit line (EL), and 
the nearest freight or commuter train line. 
 
I restrict the analysis to five neighborhoods on the near north side of Chicago, Lakeview, 
Lincoln Park, Logan Square, North Center, and West Town. Each of these neighborhoods 
has relatively high-priced and rapidly appreciating housing.  The area is a hotbed of 
teardown activity.  In order to accommodate new construction, older homes are routinely 
torn down by their owners or by developers.  Vacant lots are rare. 
 
In this environment, it is nearly certain that any home that is about to be demolished is 
also about to be replaced by a new home.  Thus, the strategy of using demolition permits 
to identify teardowns runs little risk that we actually are identifying decaying buildings 
that are simply be demolished without an expectation that that they will be replaced by a 
new structure in the near future.  In an earlier use of this data set, Dye and McMillen 
(2007) explicitly take into account the potential misclassification of teardown properties.  
They use Hausman, Arbrevaya, and Scott-Morton’s (1998) procedure to estimate a probit 
model of teardown status that explicitly accounts for the probability that a teardown sale 
is classified incorrectly as a non-teardown and vice-versa.  The probability that a 
teardown is incorrectly classified as a non-teardown is estimated to be a statistically 
insignificant 3.39%.  The probability that a non-teardown is incorrectly classified as a 
teardown is a statistically significant but extremely small 0.87%.   Based on these 
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estimates, identifying teardowns through demolitions permits works well.  In the 
estimated probit models of teardowns, the dependent variable has a value of one if a 
demolition permit was issued for the property between 1997 and 2004, and it will be 
classified as a non-teardown otherwise.2    
 
The dependent variable for the second-stage regression is the natural log of sales price.  
The timing of the sales is critical when analyzing teardown properties.  For example, if a 
sale takes place in 1994 and a demolition permit is issued 1998, was the property 
purchased originally as a teardown?  Unless the permit application follows the sale 
quickly, the structural characteristics may have a significant effect on sales price.  Thus, I 
follow Dye and McMillen (2007) and define a teardown sale as a sale taking place no 
more than two years prior to an application for a demolition permit.3  If a property is 
recorded as having an application for a demolition permit with either no sale or a sale 
before or after the two-year interval prior to the application, the observations is classified 
as a teardown but the observation is not included in the second-stage sales price 
regressions.  Thus, the number of teardowns is larger for the first-stage probit model than 
in the second-stage sales price regressions.4  The final sample consists of two groups of 
properties:  (1) teardown properties, defined as properties with a demolition permit issued 
sometime between 1995 and 2004; and (2) non-teardowns, defined as properties that 
never have had a demolition permit recorded and which sold sometime between 1995 and 
2003 (the 2003 end period being chosen to correspond with the timing of the sales for 
teardown properties).5 
 
Descriptive statistics are displayed in Table 1.  Comparing the teardown and non-
teardown samples, it is clear that teardowns are likely to be older and to have lower floor-
area ratios.  The sample of teardown properties with sales appears quite similar to the 
sample of properties that did not have a sale but which had demolition permit 

                                                
2 Dye and McMillen (2007) develop a version of the two-stage selection estimator that takes into account 
the probability that the dependent variable for the probit model is misclassified.  Kim and Hill’s (1995) 
Stein-like rule could readily be extended to this model using a Wald test for exclusion restrictions in the 
second-stage regression.  Though they do find evidence of significant misclassification probabilities in 
suburban areas of Chicago, I chose to restrict the analysis to the standard Heckit procedure since the 
estimated probabilities are very close to zero in the city sample. 
3 In unreported results, Dye and McMillen’s (2007) experiments with other cutoff dates – one year or three 
years – had little effect on the results.  The advantage of a two-year cutoff is that it leads to more teardown 
sales than one year with little effect on the results, while a three-year cutoff appears sufficiently long that 
some properties are likely to be purchased without an expectation of pending demolition. 
4 The implicit assumption is that properties with demolition permit applications are drawn from the same 
population whether or not a sale is observed in the two-year window prior to the application.  Some 
evidence that this assumption is acceptable is offered in the descriptive statistics.  While it is possible to 
model the three groups (non-teardowns, properties with demolition permits and sales in the two-year 
windows, and other properties with demolition permits) separately, this extension is beyond the scope of 
the current paper.  
5 The assessment data all date from 1997 while sales dates range from 1995 to 2003.  Since the date of the 
teardown sales always precedes the date of the demolition permit application, there is little risk that the 
structural characteristics for the teardown observations actually reflect subsequent new construction.  
However, assessment files are updated with some lag and there is some probability the structural 
characteristics are measured with error, particularly since only one year’s assessment file is available for 
this analysis.  
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applications during this period.  Note that a political division – the ward – is included 
along with Chicago’s traditional neighborhood designation.  I include this variable 
because Chicago’s aldermen effectively have veto power over developments in the ward 
they represent.  Since some aldermen are more receptive to teardowns than others, this 
variable is a potentially important determinant of teardown status. 
 
Table 1 also show the classification of variables as structural characteristics (S), 
characteristics of the lot and location (L), and  other characteristics included in the sales 
price regressions (namely, date of sale, D).   The sales price models include these sets of 
characteristics as explanatory variables.  The probit model of teardown status differs in 
several ways from the sales price regressions.  First, the time of sale variables are omitted 
since these variables are not observed unless a property has actually sold.  Second, the 
natural log of building area is replaced by the log of the floor area ratio – the ratio of 
building area to lot size, or FAR.  Developers claim that the floor area ratio is an 
important determinant of teardown status because zoning provisions directly regulate 
density in Chicago.  In addition, it is expensive to tear down tall buildings, while small 
lots make it difficult to maneuver when demolishing a building.  Since perfect 
collinearity prevents the logs of land area, building area, and the floor area ratio from all 
being included in a regression, it seems reasonable to include FAR rather than building 
area in the probit model of teardown status.  This modification of the explanatory 
variable list helps identify the model by providing an additional source of variation across 
the two equations.   
 
Identification also is obtained by adding three variables that control for differences 
between a property and other buildings in the neighborhood.  Developers may be more 
likely to choose older, smaller homes on large lots for demolition.  Thus, I include the 
ratios of age, land area, and building areas to their census tract averages as explanatory 
variables for the probit models of teardown status.   
 

5. Regression Results 
 
Standard OLS regression results are shown in the first two sets of estimates in Table 2.  
The first set of results includes structural characteristics, characteristics of the location, 
and the year of sale as explanatory variables, while the second set of results comes from a 
restricted model in which the structural characteristics are omitted.  Although an F-test 
suggests that the structural characteristics offer statistically significant explanatory 
power, only the estimated coefficients for building area and brick construction are 
significant at the 5% level in the unrestricted regression.  In general, the structural 
characteristics have far less explanatory power than the location variables or the year of 
sale.   
  
Since teardowns are valued primarily for their lot, land values can be inferred from the 
location variables.  The results suggest that land values are higher close to EL stops and 
near Lake Michigan.  Proximity to rail lines does not have a statistically significant effect 
on land values.  The elasticity of land value with respect to lot size is estimated to be 
0.5797 in the unrestricted regression, compared with 0.6666 in the regression with the 
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structural characteristics omitted.  Land values appreciated rapidly between 1995 and 
2003.  The estimated coefficient of 1.0012 for the unrestricted model implies that land 
values rose at an average annual rate of approximately 13.3% over this period, compared 
with 14.0% for the restricted model.   
 
The last set of results in Table 2 is obtained from the Stein-like rule weighted average of 
the restricted and unrestricted regression estimates, as given by equation (4).  Since the F-
statistic is statistically significant, the rule places more weight (69.21%) on the 
unrestricted estimates than on the restricted estimates (λ = 30.79%).  The estimated 
coefficients thus lie closer to their values from the unrestricted estimates, while the 
coefficient for the 2003 dummy variable (1.0158) implies an average annual rate of 
appreciation of 13.5%.  The bootstrap standard errors are generally close to their OLS 
counterparts, with some variation.  The high R2’s for both the restricted and unrestricted 
models suggest that land values can be estimated quite accurately using teardowns. 
 
The Stein rule takes advantage of our prior expectation that structural characteristics have 
little effect on the sales prices of teardown properties.  Table 3 provides some evidence 
about the sensitivity of the results to the specification of variables excluded from the 
restricted estimates.  In particular, the log of building area and the dummy variable 
representing brick construction are included in the restricted regression since they are 
statistically significant in the unrestricted model.  The value of λ increases to 0.7158 
when these variables are included in the restricted estimates, meaning that under this 
specification the Stein-like estimator places 71.58% weight on the restricted estimates.  
The important feature of Table 3 is the remarkable similarity of the Stein estimator results 
under the two alternative specifications.  For example, the coefficient for the log of lot 
size is 0.5797 in the unrestricted model, compare with 0.6666 in the original restricted 
specification.  The Stein rule estimate is 0.6064 when building area and brick 
construction are counted as excluded variables in the restricted model, while the estimate 
is similar at 0.5811 for the Stein rule estimator with the alternative set of excluded 
regressors.  These results suggest that the Stein rule approach does indeed reduce the 
variability of the land value estimates. 
 
Some researchers have attempted to use hedonic price functions for non-teardown 
properties to estimate land values.  Table 4 shows that the land value estimates implied 
by non-teardown sales are much different from the estimates obtained using teardowns.  
The coefficients for the structural characteristics are highly significant (F = 271.85), and 
the Stein rule only places a weight of 0.0045 and the restricted estimates.  The difference 
between the land value estimates implied by the teardown and non-teardown samples is 
most evident in the estimated effects of lot size proximity to Lake Michigan.  Whereas 
the teardown Stein-rule estimates imply that the elasticity of land value with respect to lot 
size is 0.6064, the estimated elasticity is only 0.2979 in the teardown sample.  The Stein-
rule coefficient for proximity to Lake Michigan is 0.5525 for the teardown sample, 
compared with a marginally significant 0.0641 in the non-teardown sample.   
 
The likely reason for these differences is that the non-teardown sample attributes some of 
the effect of missing structural variables to location.  For example, a home on a large lot 
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may well prove to have a fairly low-quality structure since it is likely to have been built 
at a time when the location was in low demand.   Since structural characteristics 
significantly influence the value of non-teardown homes, a missing variable that is 
positively correlated with lot size may lower the sales price.  Thus, non-teardown sale 
prices attribute some of the effects of low-quality construction material to lot size.  
Teardowns are a much more accurate measure of land value because they suffer far less 
from missing variable bias caused by omitted structural characteristics.  If structural 
characteristics have little effect on the sales price of teardown properties, then the fact 
that these variables are not measured accurately has little effect on the estimates for a 
sample of teardown properties. 
 

6. Selection Model Results 
 
The OLS results are subject to selection bias if teardowns are not drawn randomly from 
the full sample of sales.  Previous research (Rosenthal and Helsley, 1994; Munneke, 
1996; McGrath, 2000; and Dye and McMillen, 2007) has corrected for sample selection 
bias using the Heckman two-stage estimation procedure.  This section presents the results 
of standard Heckit estimates, along with estimates of a Stein-rule version based on the 
results of Kim and Hill (1995). 
 
The first-stage probit results are shown in Table 5.  The dependent variable for the probit 
model equals one if a demolition permit was recorded for the property between 1995 and 
2004.  Although they have little direct influence on the sales price of teardown properties, 
structural characteristics have significant effects on the teardown probability.  
Measurably higher-quality homes – those with a basement, fireplace, central air 
conditioning, a garage, and brick construction – are significantly less likely to be 
demolished.  However, homes in good locations – near Lake Michigan and close to an 
EL stop – are more likely to be torn down.  Teardowns are also more likely for homes on 
large lots with low floor area ratios.  Somewhat surprisingly, a home is more likely to be 
torn down when its lot is smaller than the average in a census tract.  Teardowns also tend 
to be drawn from homes that are older than the average for the tract. 
 
Table 6 shows the results of second-stage sales price regressions for the subset of 
properties with demolition permits that also were sold during the two years prior to the 
application.   The results are directly comparable to the OLS results of Table 2.  Although 
the selection bias correction variable is not statistically significant, including it in the 
regression leads to statistically insignificant coefficients for every structural characteristic 
variable.  The coefficients for building area and brick construction decline markedly in 
value, which suggests that much of the apparent effect of these variables on land values is 
actually due to their role in determining whether a structure is torn down.  The 
coefficients for the location variables tend to increase in magnitude after controlling for 
selection bias.  The restricted second-stage Heckit estimates shown in Table 6 are quite 
similar to the restricted OLS estimates in Table 2 even though the selection bias 
correction variable adds significant explanatory power to the second-stage sales price 
regression.  However, the Stein-rule estimates for the Heckit model differ from the Stein-
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rule OLS estimates because the Heckit version of the Stein rule places zero weight on the 
unrestricted estimates since the Wald test fails to reject the restricted model. 
 
Table 7 shows the selection model results for the non-teardown properties.  The 
selection-bias correction variable and the structural characteristics add significant 
explanatory power to these regressions, so the Stein-like rule places most (97.29%) of the 
weight on the unrestricted model.  No matter which model is used, the estimated 
coefficients for the structural characteristics are much different from their counterparts in 
the teardown properties.  The estimated value of location is likely to be subject to severe 
bias in a sample of developed properties whose value is determined in part by the value 
of the structure. 
 
The Stein-like rule estimates shown in Table 6 are the preferred land value estimates.  
The estimates are not subject to bias from missing structural characteristics variables 
because teardown sales reflect the value of lot size and location alone.  The two-stage 
estimation procedure controls for the selection bias that may be present if teardown 
properties are not randomly drawn from the general population.  The Stein-rule version of 
the estimator removes the imprecision induced by the inclusion of insignificant structural 
characteristics.  Furthermore, the Stein-rule helps to increase the precision of the two-
stage Heckman procedure by ensuring that the teardown sales price model is identified by 
exclusion restrictions.   
  

7. Conclusion 
 
Teardowns are a useful tool for estimating land values in built-up urban areas.  Since the 
prices of teardown properties are not influenced by any characteristics of the current 
structure, teardowns provide direct estimates of land value without any contaminating 
influences from unobserved structural characteristics.  In this paper, I demonstrate how 
this non-sample information – our prior expectation that structural characteristics do not 
affect teardown sales prices – can be used to obtain more efficient estimates of land 
values in active teardown markets.  A direct application of Knight, Hill, and Sirmans’ 
(1993) version of the Stein suggests that a weighted average of the OLS estimates with 
and without the structural characteristics as explanatory variables produces an efficient 
set of land value estimates that suffer from little bias.  The ability of this estimator to 
extract information efficiently from small samples is important since teardowns comprise 
a relatively small portion of the total number of sales even in active teardown markets. 
 
The paper also shows how Kim and Hill’s (1995) version of the Stein rule can be applied 
to hedonic price functions that include controls for selection bias.  Selection bias is likely 
to be present when analyzing teardowns because teardowns are unlikely to be drawn 
randomly from the total sample of sales.  This version of the Stein rule is based on the 
value of a Wald test statistic determining whether structural characteristics add 
significant explanatory power to the second-stage hedonic sales price function.  The Stein 
rule has a further advantage in the context of the selection model because the standard 
two-stage estimation procedure suffers from multicollinearity and exclusion restrictions 
are not always readily available.  The second-stage model will be estimated more 
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precisely using a Stein-like estimator that places some weight on a model incorporating 
reasonable exclusion restrictions even if the excluded variables cannot definitively be 
ruled out of the model beforehand. 
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Table 1 

Descriptive Statistics 
 

 

 

Teardowns, 
Sales 

(399 obs.) 

Teardowns, 
No Sales 

(1961 obs.) 
Non-Teardowns 

(11,064 obs.) 

Variable Mean Std. Dev. Mean 
Std. 
Dev. Mean Std. Dev. 

Sales Price (1000s) 349.1720 226.5360   369.9460 1493.3740 
Log of Sales Price 12.5801 0.6183   12.5892 0.6418 

Structural Variables (S) 
Age in 1997 104.6491 13.7409 104.4549 13.9410 89.5444 31.4579 
Basement 0.6967 0.4602 0.6808 0.4663 0.7394 0.4390 
Basement is finished 0.2607 0.4395 0.2356 0.4245 0.2341 0.4234 
Fireplace 0.0476 0.2132 0.0515 0.2211 0.1361 0.3429 
Central air  0.0526 0.2236 0.0607 0.2388 0.1687 0.3745 
Garage, 1-car 0.1830 0.3871 0.1657 0.3719 0.1907 0.3929 
Garage, 2 or more cars 0.4486 0.4980 0.4804 0.4997 0.4847 0.4998 
Garage is attached 0.0276 0.1639 0.0245 0.1546 0.0722 0.2589 
Multi-family  0.5539 0.4977 0.5946 0.4911 0.6244 0.4843 
Log of building area 7.3564 0.4382 7.4167 0.4573 7.6252 0.4592 
Brick construction 0.3058 0.4613 0.3361 0.4725 0.5598 0.4964 

Location Variables (L) 
Distance from EL stop 0.3958 0.2047 0.4053 0.2159 0.4522 0.2481 
Near Lake Michigan 0.0075 0.0865 0.0178 0.1324 0.0140 0.1175 
Near rail line 0.3609 0.4809 0.3748 0.4842 0.2975 0.4572 
Log lot size 8.0700 0.2485 8.0749 0.2386 7.9811 0.3771 
Lakeview 0.2306 0.4217 0.2723 0.4453 0.1734 0.3786 
Logan Square 0.1278 0.3343 0.1275 0.3336 0.2801 0.4491 
North Center 0.1779 0.3829 0.1775 0.3822 0.1705 0.3761 
West Town 0.2581 0.4382 0.2228 0.4163 0.2215 0.4153 
Ward 1 0.1554 0.3627 0.1300 0.3364 0.1245 0.3301 
Ward 26 0.0677 0.2515 0.0658 0.2480 0.1116 0.3149 
Ward 27 0.0100 0.0997 0.0229 0.1498 0.0218 0.1460 
Ward 32 0.3734 0.4843 0.3565 0.4791 0.2570 0.4370 
Ward 35 0.0175 0.1315 0.0265 0.1607 0.1307 0.3371 
Ward 43 0.1579 0.3651 0.1326 0.3392 0.1142 0.3181 
Ward 44 0.1103 0.3136 0.1673 0.3733 0.0925 0.2897 
1996 0.0752 0.2640   0.1122 0.3156 

Additional Variables for the Sales Price Regression (D) 
1997  0.1053 0.3073   0.1243 0.3299 
1998  0.1303 0.3371   0.1207 0.3257 
1999 0.2055 0.4046   0.1196 0.3245 
2000 0.1228 0.3286   0.0913 0.2880 
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2001 0.0977 0.2973   0.1027 0.3035 
2002 0.1178 0.3228   0.1083 0.3107 
2003 0.1153 0.3198   0.1165 0.3208 

Variables Included in the Probit Model that are Excluded from the Sale Price Regressions 
Log of floor area ratio  
(in place of building area) -0.7136 0.4463 -0.6582 0.4610 -0.3559 0.5108 
Land area divided by tract 
average 1.0624 0.2712 1.0565 0.2872 0.9666 1.2598 
Building area divided by tract 
average 0.7368 0.3143 0.7786 0.3403 0.9761 0.4482 
Age divided by tract average 1.1361 0.1971 1.1356 0.2205 0.9622 0.3462 
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Table 2 
Regressions for Teardown Properties 

 Unrestricted Restricted Stein-Like Rule 
Variable Coefficient Std. Err. Coefficient Std. Err. Coefficient Std. Err. 
Age in 1997 0.0005 0.0012     
Basement 0.0579 0.0348     
Basement is finished 0.0197 0.0353     
Fireplace 0.0888 0.0757     
Central air  0.1247* 0.0730     
Garage, 1-car -0.0482 0.0443     
Garage, 2 or more cars -0.0305 0.0358     
Garage is attached 0.0618 0.0918     
Multi-family  -0.0534 0.0414     
Log of building area 0.1688** 0.0524     
Brick construction 0.1161** 0.0369     
Distance from EL stop -0.3244*** 0.0860 -0.4023*** 0.0870 -0.3484*** 0.0855 
Near Lake Michigan 0.5008** 0.1794 0.6686*** 0.1777 0.5525* 0.2491 
Near rail line 0.0008 0.0342 -0.0135 0.0350 -0.0036 0.0314 
Log lot size 0.5797*** 0.0732 0.6666*** 0.0706 0.6064*** 0.0996 
Lakeview -0.2749*** 0.0828 -0.3576*** 0.0840 -0.3004*** 0.0602 
Logan Square -0.6056*** 0.0881 -0.6466*** 0.0861 -0.6182*** 0.0805 
North Center -0.4639*** 0.0811 -0.5371*** 0.0807 -0.4864*** 0.0622 
West Town -0.7009*** 0.0898 -0.7510*** 0.0882 -0.7163*** 0.1102 
Ward 1 0.1289 0.0845 0.1050 0.0870 0.1215 0.1018 
Ward 26 -0.2263** 0.0829 -0.2812** 0.0848 -0.2432* 0.1061 
Ward 27 0.0348 0.1690 0.1905 0.1719 0.0828 0.1407 
Ward 32 0.1937*** 0.0580 0.1841** 0.0597 0.1908*** 0.0486 
Ward 35 -0.5436*** 0.1366 -0.6072*** 0.1378 -0.5632* 0.2327 
Ward 43 0.2965** 0.0984 0.3157** 0.0998 0.3024*** 0.0827 
Ward 44 0.2542*** 0.0726 0.2674*** 0.0745 0.2583*** 0.0526 
1996  0.1184 0.1033 0.1700 0.1057 0.1343 0.1114 
1997  0.0734 0.0983 0.1132 0.1001 0.0857 0.1052 
1998  0.4220*** 0.0965 0.4735*** 0.0986 0.4378*** 0.1047 
1999 0.6245*** 0.0944 0.6766*** 0.0961 0.6406*** 0.1007 
2000 0.6993*** 0.0965 0.7588*** 0.0991 0.7176*** 0.1096 
2001 0.6650*** 0.0995 0.7002*** 0.1019 0.6758*** 0.1332 
2002 0.8272*** 0.1000 0.8940*** 0.1018 0.8478*** 0.1083 
2003 1.0012*** 0.0973 1.0486*** 0.0995 1.0158*** 0.1067 
Constant 6.3912*** 0.6490 7.0645*** 0.5988 6.5985*** 0.8148 
R2 0.8058 0.7825 F(11, 364) = 3.96*** 

Notes.  The sample comprises 399 properties that sold within 2 years prior to the time a demolition permit 
was issued.  The dependent variable is the natural log of sales price.  Significance levels of 1%, 5%, and 
10% are indicated by “***”, “**”, and “*”.   For the Stein-like estimator, λ = 0.3079. 
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Table 3 
Regressions for Teardown Properties with Alternative List of Structural Variables 

Restricted Model, 
Original Specification 

Building Area and Brick  
Omitted from Structural 

Variables Variable 
Unrestricted 

Model 
 

OLS Stein OLS Stein 
Log of building area 0.1688**   0.1398*** 0.1480*** 
Brick construction 0.1161**   0.1205*** 0.1192*** 
Distance from EL stop -0.3244*** -0.4023*** -0.3484*** -0.3407*** -0.3361*** 
Near Lake Michigan 0.5008** 0.6686*** 0.5525* 0.6086*** 0.5779* 
Near rail line 0.0008 -0.0135 -0.0036 -0.0013 -0.0007 
Log lot size 0.5797*** 0.6666*** 0.6064*** 0.5811*** 0.5807*** 
Lakeview -0.2749*** -0.3576*** -0.3004*** -0.3129*** -0.3021*** 
Logan Square -0.6056*** -0.6466*** -0.6182*** -0.6528*** -0.6394*** 
North Center -0.4639*** -0.5371*** -0.4864*** -0.5063*** -0.4943*** 
West Town -0.7009*** -0.7510*** -0.7163*** -0.7632*** -0.7455*** 
Ward 1 0.1289 0.1050 0.1215 0.1082 0.1141 
Ward 26 -0.2263** -0.2812** -0.2432* -0.2536** -0.2459* 
Ward 27 0.0348 0.1905 0.0828 0.0499 0.0456 
Ward 32 0.1937*** 0.1841** 0.1908*** 0.1747** 0.1801*** 
Ward 35 -0.5436*** -0.6072*** -0.5632* -0.5491*** -0.5475 
Ward 43 0.2965** 0.3157** 0.3024*** 0.2549** 0.2668** 
Ward 44 0.2542*** 0.2674*** 0.2583*** 0.2333** 0.2393*** 
1996  0.1184 0.1700 0.1343 0.1317 0.1279 
1997  0.0734 0.1132 0.0857 0.0917 0.0865 
1998  0.4220*** 0.4735*** 0.4378*** 0.4327*** 0.4296*** 
1999 0.6245*** 0.6766*** 0.6406*** 0.6393*** 0.6351*** 
2000 0.6993*** 0.7588*** 0.7176*** 0.7164*** 0.7116*** 
2001 0.6650*** 0.7002*** 0.6758*** 0.6659*** 0.6656*** 
2002 0.8272*** 0.8940*** 0.8478*** 0.8400*** 0.8364*** 
2003 1.0012*** 1.0486*** 1.0158*** 1.0092*** 1.0069*** 
Constant 6.3912*** 7.0645*** 6.5985*** 6.7019*** 6.6136*** 
λ   0.3079  0.7158 
Notes.  The sample comprises 399 properties that sold within 2 years prior to the time a 
demolition permit was issued.  The dependent variable is the natural log of sales price.  
Significance levels of 1%, 5%, and 10% are indicated by “***”, “**”, and “*”.    
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Table 4 
Regressions for Non-Teardown Properties 

 Unrestricted Restricted Stein-Like Rule 
Variable Coefficient Std. Err. Coefficient Std. Err. Coefficient Std. Err. 
Age in 1997 -0.0001 0.0002     
Basement 0.0439*** 0.0088     
Basement is finished 0.0228** 0.0083     
Fireplace 0.0646*** 0.0128     
Central air  0.1039*** 0.0129     
Garage, 1-car 0.0032 0.0104     
Garage, 2 or more cars 0.0417*** 0.0082     
Garage is attached 0.0650*** 0.0169     
Multi-family  -0.1338*** 0.0100     
Log of building area 0.3957*** 0.0107     
Brick construction 0.0888*** 0.0080     
Distance from EL stop -0.4121*** 0.0162 -0.4980*** 0.0179 -0.4125*** 0.0166 
Near Lake Michigan 0.0638* 0.0301 0.1479*** 0.0336 0.0641* 0.0278 
Near rail line -0.0769*** 0.0081 -0.0845*** 0.0091 -0.0770*** 0.0084 
Log lot size 0.2975*** 0.0126 0.3809*** 0.0111 0.2979*** 0.0181 
Lakeview -0.1218*** 0.0221 -0.3015*** 0.0243 -0.1226*** 0.0252 
Logan Square -0.4638*** 0.0210 -0.6698*** 0.0227 -0.4647*** 0.0239 
North Center -0.2722*** 0.0209 -0.5141*** 0.0226 -0.2733*** 0.0234 
West Town -0.4420*** 0.0226 -0.5710*** 0.0246 -0.4425*** 0.0257 
Ward 1 0.0016 0.0198 -0.0303 0.0221 0.0015 0.0206 
Ward 26 -0.1238*** 0.0156 -0.1957*** 0.0174 -0.1241*** 0.0153 
Ward 27 0.0949** 0.0290 0.0113 0.0324 0.0945** 0.0289 
Ward 32 0.2236*** 0.0122 0.2241*** 0.0135 0.2236*** 0.0105 
Ward 35 -0.2687*** 0.0162 -0.3047*** 0.0181 -0.2689*** 0.0146 
Ward 43 0.2738*** 0.0240 0.2636*** 0.0265 0.2738*** 0.0275 
Ward 44 0.1697*** 0.0182 0.2455*** 0.0203 0.1700*** 0.0154 
1996  0.1048*** 0.0144 0.1108*** 0.0162 0.1048*** 0.0134 
1997  0.2217*** 0.0141 0.2251*** 0.0159 0.2217*** 0.0133 
1998  0.3592*** 0.0142 0.3725*** 0.0160 0.3593*** 0.0135 
1999 0.5202*** 0.0142 0.5311*** 0.0160 0.5203*** 0.0136 
2000 0.6682*** 0.0152 0.6670*** 0.0171 0.6682*** 0.0141 
2001 0.7481*** 0.0148 0.7488*** 0.0166 0.7481*** 0.0151 
2002 0.8248*** 0.0146 0.8146*** 0.0164 0.8248*** 0.0142 
2003 0.9048*** 0.0143 0.8973*** 0.0161 0.9048*** 0.0162 
Constant 7.1180*** 0.1057 9.7270*** 0.0917 7.1180*** 0.1057 
R2 0.6993 0.7825 F(11,11029) = 271.85*** 
Notes.  The sample comprises 11064 properties that sold between 1995 and 2003.  The dependent variable 
is the natural log of sales price.  Significance levels of 1%, 5%, and 10% are indicated by “***”, “**”, and 
“*”.   For the Stein-like estimator, λ = 0.0045.  
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Table 5 
Probit Model of Teardowns 

 
Variable Coefficient Standard Error 
Age in 1997 0.0056*** 0.0016 
Basement -0.2667*** 0.0350 
Basement is finished 0.0655* 0.0349 
Fireplace -0.2675*** 0.0641 
Central air  -0.3389*** 0.0599 
Garage, 1-car -0.0480 0.0434 
Garage, 2 or more cars -0.0722** 0.0339 
Garage is attached -0.1150 0.0914 
Multi-family  0.1673*** 0.0403 
Brick construction -0.2649*** 0.0332 
Distance from EL stop -0.6310*** 0.0782 
Near Lake Michigan 0.2895** 0.1229 
Near rail line 0.0294 0.0339 
Log lot size 0.2441** 0.1080 
Lakeview -0.3443*** 0.0898 
Logan Square -0.5988*** 0.0904 
North Center -0.4670*** 0.0872 
West Town -0.3301*** 0.0949 
Ward 1 0.3422*** 0.0859 
Ward 26 -0.1025 0.0741 
Ward 27 0.3293*** 0.1254 
Ward 32 0.5092*** 0.0533 
Ward 35 -0.6178*** 0.0891 
Ward 43 0.4582*** 0.1012 
Ward 44 0.6555*** 0.0714 
Log of floor area ratio -0.9812*** 0.0951 
Land area divided by census tract average -0.0495*** 0.0134 
Building area divided by census tract average -0.0070 0.1007 
Age divided by census tract average 0.3027** 0.1180 
Constant -3.5871*** 0.7881 
Average Likelihood 0.6899 
Pseudo R2 0.1890 
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Table 6 
Selection-Bias Corrected Regressions for Teardown Properties 

 
 Unrestricted Restricted Stein-Like Rule 

Variable 
Coef. 

Std. 
Err. Coef. 

Std. 
Err. Coef. 

Std. 
Err. 

Age in 1997 0.0018 0.0025     
Basement 0.0185 0.0754     
Basement is 
finished 0.0303 0.0386  

   

Fireplace 0.0488 0.0988     
Central air  0.0719 0.1133     
Garage, 1-car -0.0540 0.0441     
Garage, 2 or more 
cars -0.0409 0.0390  

   

Garage is attached 0.0426 0.0941     
Multi-family  -0.0259 0.0618     
Log of building 
area 0.0152 0.2676  

   

Brick construction 0.0758 0.0774     
Distance from EL 
stop -0.4146** 0.1756 -0.4479*** 0.0821 -0.4479*** 0.1024 
Near Lake 
Michigan 0.5353*** 0.1826 0.6010*** 0.1683 0.6010*** 0.2019 
Near rail line 0.0054 0.0340 0.0055 0.0332 0.0055 0.0331 
Log lot size 0.7597** 0.3161 0.7774*** 0.0691 0.7774*** 0.1668 
Lakeview -0.3392** 0.1367 -0.3676*** 0.0807 -0.3676*** 0.0787 
Logan Square -0.7099*** 0.1977 -0.7117*** 0.0826 -0.7117*** 0.1139 
North Center -0.5471*** 0.1626 -0.5799*** 0.0775 -0.5799*** 0.0929 
West Town -0.7604*** 0.1344 -0.7568*** 0.0845 -0.7568*** 0.1126 
Ward 1 0.1747 0.1128 0.1749** 0.0822 0.1749* 0.1063 
Ward 26 -0.2497*** 0.0879 -0.2815*** 0.0775 -0.2815*** 0.1122 
Ward 27 0.0826 0.1785 0.1489 0.1548 0.1489 0.1465 
Ward 32 0.2694* 0.1405 0.2853*** 0.0576 0.2853*** 0.0760 
Ward 35 -0.6454*** 0.2155 -0.7055*** 0.1247 -0.7055*** 0.2378 
Ward 43 0.3592** 0.1433 0.3918*** 0.0955 0.3918*** 0.0957 
Ward 44 0.3537* 0.1835 0.3687*** 0.0722 0.3687*** 0.0981 
1996  0.1258 0.1007 0.1362 0.1003 0.1362 0.1072 
1997  0.0812 0.0961 0.0953 0.0952 0.0953 0.0979 
1998  0.4300*** 0.0944 0.4316*** 0.0940 0.4316*** 0.1059 
1999 0.6316*** 0.0922 0.6367*** 0.0916 0.6367*** 0.0964 
2000 0.7095*** 0.0948 0.7142*** 0.0941 0.7142*** 0.1062 
2001 0.6722*** 0.0972 0.6729*** 0.0969 0.6729*** 0.1205 
2002 0.8349*** 0.0976 0.8452*** 0.0968 0.8452*** 0.1054 
2003 1.0077*** 0.0948 1.0187*** 0.0945 1.0187*** 0.1049 
Constant 5.7526*** 1.2551 5.8655*** 0.5988 5.8655*** 0.9359 
Selection-bias 
variable 0.2117 0.3596 0.2654*** 0.0442 0.2654 0.1783 
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Notes.  The sample comprises 399 properties that sold within 2 years prior to the time a demolition permit 
was issued.  The dependent variable is the natural log of sales price.  Significance levels of 1%, 5%, and 
10% are indicated by “***”, “**”, and “*”.   For the Stein-like estimator, µ = 11.0797 and 1 /a µ!  = 0. 
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Table 7 
Selection-Bias Corrected Regressions for Non-Teardown Properties 

 
 Unrestricted Restricted Stein-Like Rule 

Variable 
Coef. 

Std. 
Err. Coef. 

Std. 
Err. Coef. 

Std. 
Err. 

Age in 1997 -0.0005 0.0003     
Basement 0.0659*** 0.0122     
Basement is finished 0.0176 0.0113     
Fireplace 0.0857*** 0.0198     
Central air  0.1299*** 0.0192     
Garage, 1-car 0.0071 0.0141     
Garage, 2 or more 
cars 0.0460*** 0.0110  

   

Garage is attached 0.0601** 0.0275     
Multi-family  -0.1443*** 0.0134     
Log of building area 0.4676*** 0.0207     
Brick construction 0.1101*** 0.0113     
Distance from EL 
stop -0.3684*** 0.0249 -0.5854*** 0.0343 -0.3730*** 0.0189 
Near Lake Michigan 0.0472 0.0401 0.1428*** 0.0473 0.0504*** 0.0308 
Near rail line -0.0824*** 0.0110 -0.0632*** 0.0143 -0.0822*** 0.0087 
Log lot size 0.2274*** 0.0232 0.5687*** 0.0458 0.2343*** 0.0190 
Lakeview -0.0866*** 0.0294 -0.2928*** 0.0414 -0.0918*** 0.0263 
Logan Square -0.4020*** 0.0303 -0.7325*** 0.0470 -0.4097*** 0.0266 
North Center -0.2212*** 0.0288 -0.5228*** 0.0415 -0.2288*** 0.0263 
West Town -0.4014*** 0.0310 -0.6213*** 0.0466 -0.4070*** 0.0265 
Ward 1 -0.0277 0.0275 0.0960*** 0.0347 -0.0260 0.0208 
Ward 26 -0.1182*** 0.0226 -0.1573*** 0.0324 -0.1189*** 0.0153 
Ward 27 0.0668* 0.0398 0.1722*** 0.0500 0.0693*** 0.0307 
Ward 32 0.1815*** 0.0181 0.3630*** 0.0224 0.1843*** 0.0129 
Ward 35 -0.2407*** 0.0268 -0.3643*** 0.0474 -0.2431*** 0.0155 
Ward 43 0.2499*** 0.0327 0.3532*** 0.0465 0.2500*** 0.0276 
Ward 44 0.1181*** 0.0252 0.3598*** 0.0269 0.1216*** 0.0189 
1996  0.1060*** 0.0144 0.1017*** 0.0149 0.1053*** 0.0137 
1997  0.2215*** 0.0140 0.2204*** 0.0146 0.2212*** 0.0133 
1998  0.3581*** 0.0141 0.3637*** 0.0150 0.3582*** 0.0136 
1999 0.5193*** 0.0142 0.5238*** 0.0149 0.5191*** 0.0140 
2000 0.6673*** 0.0152 0.6692*** 0.0163 0.6670*** 0.0145 
2001 0.7480*** 0.0147 0.7467*** 0.0155 0.7476*** 0.0142 
2002 0.8238*** 0.0145 0.8236*** 0.0149 0.8233*** 0.0142 
2003 0.9048*** 0.0142 0.9004*** 0.0147 0.9045*** 0.0158 
Constant 7.0286*** 0.1724 8.4181*** 0.3971 7.0581*** 0.1350 
Selection-bias 
variable 0.2542*** 0.0408 -0.7908*** 0.0503 0.2378*** 0.0471 
Notes.  The sample comprises 11064 properties that sold between 1995 and 2003.  The dependent variable 
is the natural log of sales price.  Significance levels of 1%, 5%, and 10% are indicated by “***”, “**”, and 
“*”.   For the Stein-like estimator, µ = 664.1361 and 1 /a µ!  = 0.9729 
 


