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Abstract 

Henry George’s single tax on land is an elusive concept to implement, because land is 
occupied by a variety of buildings or is undeveloped. Land value is undefined since the 
value of the land lying under buildings is difficult to estimate and does not correspond to 
real market value. Therefore, it is hard to find taxes that are accurately related to land 
value and, hence, to the ability to pay and still satisfy George’s axiom. Static models 
unrealistically pretend that all the land is available in the market at all points in time. To 
properly treat dynamics, a generalized perfect-foresight model of real estate markets 
solvable by simulation is presented. Using a version of this model stripped-down to its 
bare essentials, the effects of the conventional ad-valorem property tax and of an ad-
valorem tax on undeveloped land are analyzed. We show a new result that the 
conventional tax speeds up the demolition-reconstruction cycle, shortening the life span 
of buildings and thus resulting in excessive use of structural capital over time, while a tax 
on undeveloped land has the opposite effects. We then turn to the application of the 
dynamic simulation model to the optimal taxation problem adapted to real estate markets. 
In this problem a different tax rate is levied on each type of undeveloped land and each 
type of building to meet a desired revenue goal, recognizing the different price elasticities 
of demand and supply for these assets. The formulation is designed to calculate 
deadweight losses associated with such optimal taxation schemes. 
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Taxes on Buildings and Land in a Dynamic 
Model of Real Estate Markets1 

 
by 
 

Alex Anas  
 

December 2001 
 

1. Introduction 
 

The Henry George (1879) single tax is a tax on land. But how should the tax be 

levied? The simplest example would be a lump sum tax on each unit of land to be paid 

regardless of what is to be done with that land and disregarding whether it is currently 

developed or not. Such a tax system is generally presumed to be neutral as George had 

envisioned. And, it is presumed, one could vary the tax from one unit of land to the other: 

the implied tax rate as a proportion of land value would not have to be the same 

everywhere to achieve neutrality. But such a lump sum tax system − while probably 

deserving a lot more attention than it has gotten − would be considered inequitable unless 

it is related either to the benefits received by the owners of the land or to the landowner’s 

ability to pay. Arguably, in an efficient capital market, the best measure of a landowner’s 

ability to pay is his land value. 

       But can tax authorities or econometricians accurately measure the value of land 

covered with buildings? Mills (1998) has argued that they cannot. The consequences of 

inaccurate measurement could be quite severe. Consider the example of an owner of a 

building who is planning to demolish his building and sell the land because that is the 

most profitable action. Suppose that the tax authority, not knowing the land value, sets 

                                                           
1 The research was supported by a David C. Lincoln Fellowship from the Lincoln Institute of Land Policy. The paper was presented at 
the Lincoln Institute conference on “The Property Tax, Land Use and Land Use Regulation”, Scottsdale, Arizona, 13-15 January, 
2002. The author is solely responsible for the contents and the views expressed. 
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the lump sum tax on this owner so high that the after-tax value of the land that will be 

released by demolition becomes negative.2 In a free society, if the owner were fully 

rational, he would abandon the building if all other alternatives yielded a negative return  

and if – by doing so – the tax could be avoided. Inducing abandonment in this way would 

be distorting and, hence, inefficient. To avoid the distortion and restore efficiency, 

owners could be forced to pay the tax even if abandoning. Knowing that they could so be 

forced, they would not abandon because they would reduce their losses by demolishing 

and selling the land. Such a prohibition of abandonment is a form of fascism. 

Alternatively, society could also restore efficiency by taking over and demolishing the 

abandoned building. Arguably, this is a form of socialism. To avoid both extremes, the 

tax authority and the building’s owner could negotiate the tax down to some reasonable 

level. That, of course, is neither fascism nor socialism. But, at worst, it opens the door to 

corrupt dealings between landowners and tax authorities. At best, it increases the 

transaction costs involved in determining a reasonable tax. So we should look for land tax 

instruments that are easy to administer at arms length and are based on observable 

measures of value.3            

        The modern literature on land taxation, implicitly recognizing the importance of tax 

schemes related to the ability to pay, has focused on ad-valorem taxes that maintain 

proportionality between the tax paid and the “true land value” so that all landowners  

faced the same tax rate. But all these modern attempts run into the basic question: “what 

is the true land value that should be taxed?” Looking at the world, we see at least two 

                                                           
2 This is more likely to be the case if land value is a relatively small part of property value as is the case in 
the United States. 
3 Of course, the same pitfalls exist for taxes proportional to assessed values if those values cannot be 
accurately calculated as they are unlikely to be for land occupied by buildings.  
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types of land. The first is land that is undeveloped or vacant in the sense that there is no 

building on it. The second type of land is land that is occupied by a building of some sort 

or having minimal infrastructure improvements on it or near it, making it suitable for 

supporting buildings at a later date. Further scrutiny reveals additional complexity. The 

types of buildings as well as the types of vacant land that we see vary enormously in their 

underlying economics. There are, for example, tall buildings (e.g. skyscrapers) that are, 

for economic reasons, extremely unlikely to be demolished any time soon. Hence, the 

land that they occupy is virtually locked out from the active market for land. There are, as 

well, shorter buildings in poor structural condition that are very likely to be demolished 

and could make their underlying land available for some other type of building to be 

constructed. Buildings can also be changed (from apartments to offices for example) 

without affecting the underlying land or their structural density. To make a long story 

short, virtually every piece of land is a different type of land with a different propensity 

to remain in its present use or to become recycled into some other.  

         Looking at things in this way gives rise to a situation that is far different from 

George’s idealized view. While it is still true that the aggregate supply of land is fixed for 

all practical purposes, the supply of vacant land at any one place is not at all fixed. More 

vacant land can be created by demolition of buildings and the supply of it is far from 

inelastic in general. Meanwhile, the supply of a particular type of building at a location 

can be very elastic or very inelastic depending − among other things − on the costs of 

construction, demolition, conversion without demolition, as well as the availability of 

vacant land nearby. These elasticities also depend on time horizons.  
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        Given the above realistic way of looking at what we mean by a “land market” what 

exactly is to be understood by a single rate ad-valorem tax on land value? It is perhaps 

best to approach this question gradually by making a brief review of recently published 

modeling exercises by several urban economists who treated the response of an entire 

land market to different tax structures. These are the recent static models by Mills (1998), 

Brueckner (1999) and Brueckner and Kim (2000) in which an idealized, homogeneous 

and instantly available land market exists by assumption. These authors examined the 

land tax in the context of the monocentric city of urban economics. They drew 

conclusions about the effects on physical city size and land use within such a city arising 

from a revenue-neutral switch from a conventional ad-valorem property tax falling on 

land and structures at the same rate, to a hypothetical pure ad-valorem land tax falling on 

land only. Mills examined a monocentric city containing exporting businesses only and 

open to the in and out-migration of these businesses. He showed that the switch to the 

land tax increased the capital per acre (structural density) that businesses would employ 

throughout the city. Because this increases the productivity of each acre, the rent-distance 

function rises and the city expands in radius and in total output. Brueckner examined a 

city of housing consumers closed in population and showed that the switch to a land tax 

causes the after-tax cost of capital to fall and thus the structural density of housing to rise 

on each acre. Dwelling sizes and total population being constant, the city shrinks in 

radius (less urban sprawl occurs). In Brueckner and Kim, it is shown that this result can 

be reversed if dwelling sizes are not constant. The lower after-tax cost of structural 

capital, arising from the switch to the single tax, increases the dwelling size demanded by 

each consumer while also increasing the structural density of buildings. If the dwelling-
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size effect dominates, there could be fewer households on each acre even with taller 

buildings on each acre and a city of a given total household population could expand in 

radius causing more not less sprawl.             

       The above models being static, they cannot shed light on the dynamic effects of 

taxes. Dynamic analyses that can treat conversions involving buildings and land is 

needed. A paper by Arnott (1998) is a step in this direction and a good summary of 

earlier literature.4 He considered how to devise a neutral tax on a single 

developer/landowner rather than devise such a tax system for a whole land market. The 

developer in question has a unit of vacant land to build on and he decides, under perfect 

foresight, when to build and at what structural density. However, once he builds, the 

building remains undemolished forever. Arnott looks for a neutral tax in this context, a 

tax that is neutral with respect to the timing (when to develop the unit vacant land) as 

well as the density of development, and also raises the desired revenue. Arnott shows 

how to achieve such neutrality by the coordinated setting of three separate taxes all 

related to some concept of value. The first tax is on the pre-development value of the 

land, defined as “what the land is worth in its vacant state before it is developed.” The 

second tax is on the post-development residual site value, defined as “property value 

minus the depreciated cost of the structure on the site.” The third tax is a subsidy on the 

structural capital employed on the site.   

       The purpose of the current paper is to present a more general and complete  

                                                           
4 Earlier papers by  Skouras (1978), David Mills (1981, 1982), Tideman (1982) and Wildasin (1982) 
debated the neutrality of alternative land taxes. Bentick (1979), Kanemoto (1985) and Turnbull (1988) 
focused on the effects of taxation on the timing and efficiency of development. But none of these authors 
considered demolition as we do in this article. 
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theoretical framework and empirically useful modeling tool for analyzing alternative tax 

structures on buildings and land over an entire real estate market. Using such a 

framework in a dynamic context, it should be possible to devise alternative tax structures 

and make revenue-neutral comparisons among them, quantifying the deadweight losses 

of these alternative tax structures. Clearly, a dynamic model properly grounded in 

economic theory is the appropriate approach for such a research program. To this end, I 

will use the model that I have developed in earlier work with Richard Arnott, and I will 

modify it to deal with problems of property taxation and optimal property taxation.5   

        The paper is organized as follows. Section 2 presents the structure of the model and 

the solution properties in the case where there are no taxes on buildings and land. 

(Appendix A is a technical appendix that explains how some of the relationships used in 

the model are derived.) In Appendix B, I describe a computational algorithm (Anas and 

Choi (2001)) that we have designed to solve the dynamic simulation model with 

exogenously specified taxes on building submarkets (or building types) and on land. 

Then, in Section 3, I strip the model down to its bare essentials and investigate several 

simple properties of it in the presence of alternative taxation schemes for stationary state 

dynamics. By performing comparative statics on such a stationary state, I compare a tax 

on undeveloped land to a conventional property tax that falls on land and buildings at the 

same rate. I show that the conventional tax causes inefficient use of structural capital, 

because it speeds up the construction-demolition cycle shortening the lives of buildings.  

In the intensive margin of building replacement, this results in excessive use of structural 

capital over time on each unit amount of land. But the conventional tax also works in the 

                                                           
5 See Anas and Arnott (1991, 1993a,1993b, 1993c, 1994, 1997) and Anas, Arnott and Yamazaki (2000) for 
the earlier publications on this model and its empirical application.   
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extensive margin, resulting in a lower stock of buildings (fewer units of land are 

developed). Hence, unlike what is commonly believed, the total amount of structural 

capital used over time would decrease only if the extensive margin effect dominated the 

intensive margin effect. I also show that the tax on undeveloped land works in the 

opposite way, offsetting − even though imperfectly − the inefficiencies of the 

conventional tax. (These results are summarized in the text and the details of the analysis 

are in Appendix C.) The Mills or Brueckner models discussed earlier are static models 

and thus ignore the intensive margin of building replacement although they treat the other 

intensive margin of structural density. The intensive margin of building replacement is 

also absent from Arnott’s model who also treats structural density but does not consider 

demolition. In his model, development is clay-putty: once buildings are constructed they 

remain in place forever. In Section 4, I present a generalized optimal taxation problem 

that can be solved using an extended formulation of the dynamic model of Section 2. In 

this formulation, there is a different tax rate on vacant land and on each building type and 

these taxes can be optimized for every year over a planning period. The “optimal taxation 

problem” is a well-known textbook problem in economics. In this textbook version, it is 

recognized that the price elasticity of demand varies a great deal from commodity to 

commodity. Efficiency requires levying a higher tax rate on those commodities for which 

the demand is relatively price inelastic and a lower tax rate on those for which the 

demand is relatively price elastic. How does the setting of this textbook problem differ 

from that of the real estate market with land? It should be natural to view buildings in 

different sub-markets and vacant land in different locations as being different 

commodities. As explained earlier, we also know that the price elasticities of demand for 
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these buildings and land will differ as will also the price elasticities of supply. In that 

sense, our problem is similar to the textbook problem but somewhat more complex. I 

leave solution of this optimal taxation problem to future work. Part of the research 

program is to embed the simulation procedure described in Section 2 into a more general 

algorithm that can determine the optimal tax rates taking the interdependent demand and 

supply elasticities into account.  

2.  Structure of Model  

We now turn to a description of the simulation model.6 The description presented  

here follows closely that in Anas, Arnott and Yamazaki (2000).7 

     2.1 Basic Assumptions 

     Time consists of periods of equal length (years). Time t denotes the start of year t and 

time t+1, the end of year t. t = 0 denotes the present (initial) year. Variables change only 

at the start or end of each year. The model incorporates idiosyncratic uncertainty on both 

the demand and the supply sides. For example, at the start of each year, consumers of 

buildings learn the idiosyncratic components of their tastes, earn incomes, choose their 

most preferred submarket and pay rents, while investors receive  

rents and bid on vacant land or building assets determining asset prices, prior to learning 

their idiosyncratic costs.8 Idiosyncratic costs of maintenance for buildings for the year, 

are revealed a bit after the start of a year, while costs of construction, structural 

                                                           
6 The model is consistent with theory. But I refer to it as a “simulation model” because simulation is the 
only practical way to solve it in the general case.  
7 The model follows discrete choice theory. Despite my efforts over the years, the approach is still 
considered unorthodox within urban economics. But its enormous advantage is that it lends itself to direct 
empirical and numerical implementation of the theoretical models without sacrificing the theoretical form 
of the model equations (see Anas and Arnott (1993c, 1994, 1997). This contrasts with orthodox urban 
economics where, with few exceptions, authors develop a theoretical model and then have to switch to 
some reduced form, vaguely related to the theoretical model, to test it empirically. 
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conversion or demolition are revealed just before the end of a year. The timeline in Table 

1 illustrates the sequence in investor and consumer actions and in the revelation of 

information within a year. The left column shows when a particular item of information 

is revealed and the right side shows the decisions that follow. 

      The building stock is divided into k=1…K building types or submarkets. Each 

submarket represents a different combination of size (e.g. floor space), physical quality,  

structural density or location. k=0 represents vacant land.9 Buildings consist of structure  

and land. Buildings can be created from land via construction or from buildings of other 

types via structural conversions. Land is created by demolitions of buildings. is the lot 

size (or land needed per unit building) in submarket k and 

km0

km0

1 is construction density. 

, for k > 0, is the number of  building units of type k, used up in the conversion 

process, to create one unit of type k′ and 

kkm ′

kkm ′

1

0tS

,0tV

, 10 tt R

is the k →k′ conversion density. Of course, 

 for all k >0.  The vector S t = ][ is the stock (number of unit 

buildings

1=kkm ,...,, 1 Ktt SS

,...,1 Ktt VV

,..., KtR

10) in each submarket (or land for k=0) in year t. The total amount of land 

(vacant plus occupied by buildings) is A t  and is exogenous for each t. We will normally 

assume that A t = A for each year t.  V t = ][ is the vector of asset prices for 

buildings and land in year t, and R t = ][  is the vector of land and building R

                                                                                                                                                                             
8 By “building” we refer to any type of building such as single family home, apartment building, office 
building etc. Consumers of buildings can be households or business establishments. 
9 The model is here presented for a single land market, but in Anas and Arnott (1993c, 1994, 1997) it has 
been applied to metropolitan housing markets (e.g. Chicago) with two (city and suburban) land markets.  
 
10 A “unit building” is the quantity a building consumer wants to consume. In the case of housing 
consumers, a “unit building” is a whole housing unit. In the case of business establishments it could be 
viewed, for example, as a unit amount of floor space in a building. 
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rents (per unit building) in year t. The asset price of a unit building includes the value of 

the land on which the unit is built. The rent for vacant land, , is exogenously given for 

each t and the initial stock vector S , is exogenous as an initial condition.

tR0

0
11 All other  

elements of the rent, stock and asset price vectors are endogenous for each t. 

         As noted, a unique feature of the model is that it treats stochastic heterogeneity at 

the level of individual agents on both the demand and the supply sides of the market. The 

chief reason for doing so is to achieve empirical realism in applied studies (e.g. Anas and 

Arnott (1993c,1994, 1997) as well as smooth computational solutions. On the demand 

side, consumers who belong to the same group differ in the idiosyncratic taste constants 

they attach to building submarkets. On the supply side, building units differ in 

idiosyncratic costs of maintenance for occupied and vacant units as well as in the costs of 

converting those units to land or to other units. Similarly, there are idiosyncratic costs in 

converting land to buildings. We assume that each idiosyncratic utility or cost is a draw 

each year from the following double exponential distribution, known as the Gumbel and 

given by (1) below. We assume that all agents know the distribution of utility or cost and 

its mean for each alternative, but learn the value of their idiosyncratic deviation from the 

mean only after it is realized. 

(1)  exp=< zG  , γ > 0,   )]([exp)( ηγ −−− zx

where x stands for a random realization of  idiosyncratic utility or cost. The distribution 

has mode η. We assume
γ

η gxE +=][ =0 (by imposing 
γ

η g
−= ) where  is 5772.0=g

                                                           
11 That the vacant land rent is exogenous is analogous to the assumption of exogenous agricultural rent in 
the models by Mills (1998), Brueckner (1999), Brueckner and Kim (2000) or Arnott  (1998) discussed 
earlier. Of course, there is no loss of generality in assuming that the rent for vacant land is zero.  
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Euler’s constant. The variance is .
6

][ 2

2

γ
π

=xVar   is inversely proportional to the 

variance, and is called the dispersion parameter or the heterogeneity coefficient. As 

2γ

01
2 →

γ
, idiosyncratic heterogeneity vanishes and all decision makers (consumers or 

investors) most-prefer the same choice. And as ∞→

,, 2X

2
1
γ

( 1X

, idiosyncratic heterogeneity 

swamps nonrandom effects, making choices extremely heterogeneous. Then, all choices 

are most preferred with the same probability. 

n...

      Closure Property of (1): The Gumbel distribution given by (1) has the property that it 
is closed under the maximization operation. Hence, if n random variates 

 are each i.i.d. with means  and dispersion 
parameter γ according to (1), then the random variate max is also 

distributed according to (1) with mode 

),...,,,( 321 nxxxx ),...,3 nXX
,( 21 xx ),...,, 3 nxx

∑ =i
ln1

γ iX
1

)exp(γ +constant and dispersion 

parameter γ. The proof is in Appendix A.  
 
      This closure property implies, for example, that the distribution of a maximized 

objective in a population of maximizing agents has the same distribution as the un-

maximized objective has in the same population of agents. Thus, aggregation across 

maximizing agents does not affect the ex post distribution of the maximized objective. 

This further implies that welfare comparisons can be made knowing that two different 

policies which affect individual objectives will not affect the variance of the maximized 

objective in the population of agents.  

        While the model will be stochastic at the level of consumers and investors as 

explained above, there is no uncertainty at the aggregate level. Hence, rents, asset prices 

and stocks are all obtained as deterministic variables. Asset prices are deterministic 

because risk-neutral investors bid on buildings and on land before the uncertainty in costs 
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is realized. Hence, at the time of bidding, investors are ex ante identical and make the 

same bids. The model solves for the expected stock distribution as a function of 

deterministic asset prices and for the expected allocation of households among 

submarkets as a function of deterministic rents.      

       2.2 Demand Side: Consumers 

        Consumers view submarkets as internally homogeneous. Hence, they are indifferent 

about choice within a submarket. After learning his idiosyncratic realization of utilities 

for each submarket for that year, a consumer chooses the most-preferred submarket and 

randomly selects a unit building to rent within that submarket. Each consumer 

reevaluates his choice at the start of each period and can costlessly relocate. We treat 

consumers as myopic and we assume that they neither borrow nor save. We divide them 

into h = 1…H demand groups according to socioeconomic types (income, family size, 

age of household head or race). N t  is the exogenous vector of the number 

of consumers per year in each demand group. y t =[ ,…, ] is the exogenous income 

of a consumer in demand group h in year t.

],...,[ 1 Htt NN=

ty1

1tY

Hty

KtY

hkt
ˆ

12 Y t = ][  is a vector of submarket 

qualities and  is the marginal utility of quality. Then, U  is the utility a 

consumer enjoys from renting a unit building in submarket k in year t. 

, is the utility of submarket k which is common to all consumers of 

type h.  measures an idiosyncratic submarket-specific utility varying around mean 

utility  for consumers of type h.  For each consumer of type h, idiosyncratic utilities 

u =[u ,…, u hKt ] are drawn from (1) at the start of each year with dispersion parameter 

,...,

=hβ

kt +

hkthkt uU +

kthhthkt YRyU β−=

hktu

hktU

h th1

                                                           
12 For businesses, we may think of this as the net income before rent is paid, for example. 
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htδ

Phkt

(i.e. γ ≡  in (1)). Then, the probability that a type h consumer selects submarket k is 

 with  Appendix A presents 

the proof that imposing (1) on each u  (with mean U  yields the multinomial logit 

choice probabilities: 

htδ

.[U ],;Pr ksuUuob hsthsthkthkt ≠∀+>+=

hkt

(hktP

∑ =
=

Kk hktP
...1

.1

)hkt

; ∑ =
=

Kz hztP
...1exp(

exp(

...1∑ =

=
Kz

htU
δ

δ

ht ∑ =
=

z
ht

...1
ln1)]

δ

]Kot vt ,...,1vtD

]

+≡ hkthkt kuUE ;[max(

1otD

ot ],...,1 Kotot dd vt 1vtd

(2)                         R t ) 
)

)

hztht

hkt

U
.1  

 Appendix A also proves that, under the closure property of (1) described above, the ex 

ante expected value of the maximized utility level (or expected consumer surplus) of a 

consumer in group h at the start of year t is: 

(3)               Ψ (R t ) =
K hzthtUK )exp(...1 δ . 

       2.3 Supply Side: Investors 

       Investors are risk neutral and perfectly competitive. As shown in Table 1, investors 

value buildings or land at the beginning of each year, knowing only the probability 

distribution of the idiosyncratic costs they will encounter later. Let C t =[C ] be the 

(K+1)×(K+1) matrix of expected k to k′ conversion costs for t>0, and let c t =[ ] be the 

corresponding (K+1)×(K+1) matrix of idiosyncratic conversion costs per unit of type k′ 

building for t>0, measured as a deviation from the expected cost. These are revealed right 

before the end of year t. Also, let D ot =[ , D =[ , be the 

expected maintenance costs for type k (k > 0) occupied and vacant units common to 

investors, with d =[ , d =[ , the idiosyncratic deviations from 

the respective expected costs. These are revealed right after the start of year t. For each 

tkk ′

]

tkkc ′

,..., D

,..., Kvtd

KvtD
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investor, the  and the  are drawn from (1) for each submarket and for 

land with dispersion parameters Φ  and , and means 

tkkc ′− kvtkot dd −− ,

kt ktφ
kk

tkk

mr
C

′

′

+
−

)1(

kvt

.[Pr kotob π

 and 

respectively. Let  ( ) be the profits from keeping a 

type k unit (k >0) occupied (vacant) during year t. Then, the probability that a unit in 

submarket k>0 will be let to a consumer for year t is  = . The 

procedure of Appendix A, gives the binomial logit: 
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.[ob Π
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(4)         kotq ; . 

From Appendix A, under the closure property, the expected profit of this occupancy 

decision at the start of year t, is 

(5)           ω  

For vacant land, we assume that it can always be rented for the exogenous land rent. 

Hence,  Now note that year-end conversion profits from type k to type k′ 

asset, discounted to the start of year t are 

0tω

tkk m
CV

′ = )(

Pr kktk =′

. The probability that 

an investor who holds asset type k = 0,1,…,K at the start of  year t will choose to convert 

to type k′  just before the end of year t is Q  for all k′∈ 

B(k), where B(k) is the set of asset types to which a type k asset can be converted and 

 for all k′∉B(k).  0=′tkkQ

       Figure 1 illustrates two (of many) possible ways of defining the sets B(k), for three 

building types and land. We will refer to these as alternative conversion technologies. For 

realism, it should be assumed that k∈ B(k), for each k, so that it is always possible to keep 
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a building at its current submarket state by incurring expenditure C . Figure 1a shows a 

quality hierarchy of buildings. Supposing that structural densities are the same for all 

these buildings, they differ only in structural quality. Buildings are constructed at the 

highest quality (quality 3 in the example of the figure) and – depending on the cost 

shocks experienced – can either stay in the same quality level or deteriorate only one 

quality interval per time period. Only the lowest quality buildings can be demolished. 

Thus, a quality cycle is implied where buildings deteriorate gradually (and some faster 

than others depending on idiosyncratic cost shocks experienced) until they are 

demolished and the new highest quality buildings are built on the land released by the 

demolition. So, the owner of the lowest quality building can change his asset to a highest 

quality building over at least two periods: he demolishes in period 1 and builds the 

highest quality building in period 2. Figure 1b illustrates a situation in which there are 

three buildings that differ in structural density (unlike the first part of the figure) but not 

in quality. Each structural density can be demolished or constructed. To change from one 

structural density to another on the same land requires at least two periods: the existing 

structural density is demolished in the current period and the desired structural density is 

constructed in the next period.  

kkt

      The procedure of Appendix A now yields the following multinomial logit for year-

end conversion probabilities in year t (i.e. the probability that an owner of a type k asset 

will convert it to a type k′ in year t): 

(6)             Q V t ) (tkk ′ 1+
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+
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where  if k′∈ B(k), and b if k′∉B(k). Those owners who undertake 

the conversion are those who draw (are shocked by) a low idiosyncratic conversion cost 

. From Appendix A, applying the closure property, the expected discounted ex ante 

conversion profit from a type k unit at the start of t is: 

1),( ≡′ kkb 0),( ≡′ kk

tkkc ′

(7)  Ω V t )  (kt 1+
ks

kstst
Ks kt

kt
tkk mr

CVksbkBkE
)1(

exp),(ln1))](;[max( 1
...1,0 +

−
Φ

Φ
=∈′∀Π= +

=′ ∑ . 

         2.4 Dynamic Market Equilibrium 

         We will now define the dynamic market equilibrium problem for a real estate 

market as consisting of two phases. To do so, we must specify how the exogenous 

variables driving the market such as incomes, demand group populations and costs will 

be changing over time. Suppose that these variables change in some arbitrary pattern for 

an extended period with each variable eventually settling on a stationary value thereafter. 

Then, the response of the real estate market will consist of two phases. In phase 1, the 

real estate market adjusts to the arbitrary time profile of the exogenous variables, by 

evolving from the given initial stocks of buildings and vacant land to an eventual 

stationary state of stocks, rents and asset prices. This adjustment requires stocks, rents 

and asset prices to change year by year until they all become stationary at some terminal 

year T and remain stationary thereafter. This stationary phase is phase 2.     

           Solving the dynamic equilibrium problem requires doing three things, illustrated in 

Figures 2 and 3. First, one must solve for the stationary (phase 2) stocks, rents and asset 

prices and this is independent of any initial conditions. This phase 2 solution can be 

obtained conditional on the stationary values of the exogenous variables only. Second, 

one must solve for the non-stationary (phase 1) stocks, rents and asset prices given only 
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the stationary asset prices obtained from phase 2 and the initial year stocks. Third, one 

must pin down a reasonable approximation for the value of the terminal year T (i.e. for 

the length of phase 1), so that stocks, rents and asset prices for T are sufficiently close to 

their stationary (phase 2) values. This is done simply by extending the non-stationary 

phase 1 until the difference between the year T and corresponding stationary variables is 

as small as possible (Figure 3). The algorithm that we have devised (Anas and Choi 

(2001)) and which I describe in Appendix B in fact implements this solution procedure. 

In this section, we will just focus on the formal statement of this two-phase dynamic 

equilibrium problem so that the solution procedure’s basic structure can be seen and 

discussed in more detail.         

PHASE 1 (Finite Horizon Non-stationary Dynamic Equilibrium): Given the initial 
stock vector S , the exogenous vacant land rent series R 0 , t=0,1,2…T, all other 
exogenous vectors, matrices, sets B(k) and a vector of end-of-terminal-year asset prices, 
V , a dynamic equilibrium [S t ,V t ,R t ] T

t satisfies (8),(9) and (10): 

0 t

1+T 0=

 
(8)        ∑ R t ) − 0 ; k=1,…,K; t=0, 1,…,T. 

= Hh hktht PN
...1

( )( =ktkotkt RqS

(9)         V V t )  − =0; k = 0,1,…,K; t=0, 1,…,T. −kt (ktΩ 1+ )( ktkt Rω

(10) ∑ =+ −
Kz zktzt

zk
kt QS

m
S

,...,1,01 (1 V t ) = 0; k = 0,1,…,K; t=0,1,…,T.  � 1+

PHASE 2 (Infinite Horizon Stationary Dynamic Equilibrium): Removing the time 
subscripts, and letting R and V denote the rents and year-end asset prices respectively 
and letting S be the stationary stocks, the dynamic equilibrium conditions in the 
stationary state (t > T) are written as: 
 
(11)         ∑ R) − 0 ; k=1,…,K. 

= Hh hkhPN
...1

( )( =kkok RqS

(12)         V V)  − =0; k= 0; 1,…,K. −k (kΩ )( kk Rω

(13)         ∑ =
−

Kz zkz
zk

k QS
m

S
,...,1,0

(1 V) = 0; k= 0,1,…,K.  � 

          Anas, Arnott and Yamazaki (2000) have used a concave mathematical 

programming approach to prove that the above two-phase problem has a unique solution 
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and that this solution is a welfare maximum (i.e. Pareto efficient). We now turn to a 

sketch of the solution procedure. Note that there are 3K+2 equations for each t< T and 

for the stationary state. These equations have a block recursive structure as shown in 

Figure 2. (8) (and (11)) are the market clearing conditions and state that the quantity of 

building units demanded equals the supply of building units offered for rent in each 

submarket and each year. Given some sequence of stocks, [S t ] T
t , these can be solved 

simultaneously for tentative equilibrium market-clearing rents [R t ] T
t . (9) are the zero-

profit conditions or asset bid-price equations. They state that the asset prices are 

determined by competitive bidding such that zero ex ante economic profits accrue to each 

investor at the start of each year (or, equivalently, a normal expected rate of return equal 

to the exogenous interest rate, r, is earned.) Given the terminal asset prices V T  and the 

rents [R t ] t from the previous step, equations (9) can be solved simultaneously for each 

t by backward recursion, for t= T, T-1, T-2,…,1,0, to find  tentative equilibrium asset 

price series [V t ] T
t . (10) are the Markovian stock adjustment equations. For each t, there 

are K+1 such equations, but one becomes redundant by the assumption that the total 

(vacant plus built-up) land is a time-invariant constant, A: .

0=

= ,...,1,0

0=

K
m0

1+

A

T
0=

0=

∑ =ztz S
z

13  Given 

the asset prices [V t ] T
t , (10) are solved by forward recursion for t=1,…,T-2, T-1,T to 

calculate new stocks [S t ] T
t . In an iterative solution algorithm, one revisits (8) with these 

new stocks, repeating the loop, (8)→(9)→(10)→(8)→… (see Figure 2). The process 

continues until  (8), (9) and (10) are jointly satisfied for all t. 

1=

1=

3. Comparison of  the conventional tax with a tax on undeveloped land 
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       It is helpful to examine the role of property taxation within the model presented in 

section 2. In order to do so, it is helpful to initially analyze a version of the model  

stripped-down to its bare essentials. Suppose for example that K=1 (only one type of 

building exists). Then the model simplifies to a simple housing-land cycle [as in Anas  

and Arnott, (1993a) or its neoclassical version in Anas and Arnott (1993b)]. In any one 

year, some buildings are constructed on vacant land (if the investor owning the land is 

shocked by a low construction cost) while other buildings are demolished to create vacant 

land (if the owner is shocked by a low demolition cost or a high maintenance cost). At 

stationary state, the flow of constructions must equal the flow of demolitions in each year  

so that the stock of vacant land and the stock of buildings is constant over time. Given 

this situation, which is the simplest version of the model, I can analyze the effects of a 

variety of tax schemes on the market. I will here examine two cases. One is the 

conventional ad-valorem property tax that is levied at the same rate on both assets (vacant 

land and buildings). The other is a tax on vacant land only. What are the effects of such 

taxes on the land-to-building-to-land conversion cycle? What are their effects on the rent 

for buildings and on the asset prices of land and of buildings? 

3.1 The conventional property tax  

         With only one building type and only one land market the model equations simplify 

as follows. I also assume that all buildings are fully occupied (no vacancy rate). The tax 

is assumed paid at the beginning of each year: 
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13 Lemma 2 in Anas, Arnott and Yamazaki (2000)) proves this redundancy of one of  (10) for each t. 
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       Let us review the notation. is any downward sloping aggregate demand 

function for building units as a function of the rent  for buildings. As explained 

earlier, , the rent on vacant land, is exogenous and could be taken as zero without any 

loss of generality. A is the total amount of land available with  and  the stocks of 

buildings and vacant land respectively. The structural density of buildings is assumed to 

be unity and there is no loss of generality since there is only one building type. V  and V  

are the asset prices for vacant land and for a unit building respectively. Q  and are 

the construction and demolition probabilities respectively (namely, the probabilities that 

in any one year a unit building will be demolished releasing a unit amount of land and the 

probability that a unit amount of vacant land will be built on creating a unit building.) 

These probabilities are given by the following binary logit models: 
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It is useful to rewrite these as follows, by dividing numerator and denominator with the  
 
second exponential in the denominators: 
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This second way of writing things shows explicitly that the probability of construction  
 
on vacant land is an increasing function of the difference between the asset price of a 

building and the asset price of land, and that the probability of demolition is an  

increasing function of the difference between the asset price of land and the asset price of  
 
a building. C ,C ,C ,C are the average (non-idiosyncratic) costs of vacant land 

maintenance, demolition, construction and unit building maintenance respectively. Φ  

and Φ  are the dispersions of the idiosyncratic costs associated with land and buildings 

respectively. r is the interest rate and θ  is the property tax rate.  

00 10 01 11

0

1

        Equation (15) is the market clearing condition insuring that the demand for buildings 

equals the stock. (16) and (17) are the after-tax asset price equations for land and 

buildings respectively. These equations state that assets (vacant land and buildings) are 

valued in such a way that investors make only a normal rate of return after taking into 

account taxes, rents and expected profits from future conversions. Equation (18) is the 

stationary state condition stating that the expected quantity of buildings that are 

demolished and the expected quantity of vacant land that is developed are equal. Finally 

(19) insures that buildings and vacant land do not exceed the given total land units, A.           

         Equations (15)-(19) comprise a five equation system that must be solved for 

. This problem easily yields to conventional comparative static analysis. 

Appendix C provides the details. The key for deriving the result is to first show that 

10101 ,,,, SSVVR

.01 >
θd

dR  It states that an increase in the ad-valorem tax rate increases the rent on 

buildings. Using this in equation (15), it follows that 01 <
θd

dS : the property tax results in 
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a lower stock of buildings. Hence, from (19), 00 >
θd

dS
 which establishes that more land 

is held vacant. Now note from (18) that 
01

10

1

0

Q
Q

S
S

= . Since the left side is increased by a 

higher θ, so the right side must increase also. It is also easy to establish the intuitive 

results that 00 <
θd

dV
 and 01 <

θd
dV : the property tax reduces the value of vacant land and 

of buildings. More important for the result we are about to establish, 0
)( 01 <

−
θd

VVd
.This 

means that the tax increases the value of vacant land relative to the value of a unit 

building. Therefore the rate of construction falls and the rate of demolition rises as one 

can see by inspection of (20′) and this is consistent with the stock of vacant land 

increasing at the expense of the stock of buildings. Because the rate of demolition 

increases while the rate of construction falls, the average age of standing buildings falls. 

Hence, as pointed out earlier, the conventional property tax – operating in the intensive 

margin – speeds up the demolition-construction cycle shortening the life span of 

buildings while, in the extensive margin, the property tax reduces the building stock.  

       This finding enriches the conventional view of the property tax. It is widely 

recognized that the property tax increases the cost of structural capital relative to the cost 

of land. This fact has been widely touted by observing that developers would use less 

structural capital relative to land when constructing buildings on a given amount of land.  

But this perspective comes from models in which demolition and reconstruction are 

ignored. Our finding says that ceteris paribus buildings would not last as long with a 

conventional property tax than without it. Hence, because the conventional property tax 

encourages more demolitions and subsequent reconstruction, it causes an excessive use of 
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structural capital over time. If this excessive use of capital over time in the intensive 

margin outweighs the reduced use of capital due to fewer buildings in the extensive 

margin (or due to lower structural density),  then the property tax increases rather than 

decreases the total use of capital over time.   

3.2 A tax on vacant land 
 
Next we will assume that there is only one tax and it is levied on vacant land. 

This is same as the ad-valorem tax on predevelopment land value encountered in the 

literature. Note first, that this will change only equations (16) and (17). In the case of  

(17) the tax rate θ disappears (set it to zero) since buildings are not taxed. In (16) there is 

actually no change and θ  is now replaced with which now stands for the tax rate 

levied on vacant land value. The effects of this tax on vacant land value are the opposite 

of the effects of the conventional tax analyzed above. It is easy to grasp intuitively and 

easy to prove analytically that the tax decreases the stock of vacant land because it 

increases the cost of holding vacant land. Hence, the tax increases the stock of buildings: 

0θ

0
0

0 <
θd

dS  and 0
0

1 >
θd

dS . Since the stock of buildings increases, rent falls: 0
0

1 <
θd

dR . Both 

building and vacant land asset prices fall: 0<
0

0

θd
dV  and 0

0

1 <
θd

dV , but the value of a 

building is increased relative to that of land: .0)

0

0 >
−
θ

Vd ( 1

d
V  Therefore the rate of 

construction rises and the rate of demolition falls. Thus, this unconventional tax on 

vacant land slows down the demolition-reconstruction cycle lengthening the life span of 

buildings. The average age of standing buildings increases. Hence, because this 

unconventional tax on vacant land encourages fewer demolitions and subsequent 
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reconstruction, it discourages an excessive use of structural capital over time. The effects 

of the tax on vacant land are then the opposite of those of the conventional property tax. 

4.  An optimal taxation problem for real estate markets 
 
       How would the dynamic equilibrium formulation studied in Section 2 change in the 

presence of taxes on buildings and land?  

       Note first that the formulation captures most key variables that are active in real estate 

markets. It is possible, within this framework, to introduce a variety of tax/subsidy 

instruments on the following, for example: (a) rents; (b) asset prices; (c) costs of 

construction, demolition, maintenance and other conversions; (d) net revenues of 

investors in buildings and land (i.e. profit taxes); (e) option values. Furthermore, in each 

case, taxes can be lump-sum or ad-valorem. (For example, a lump sum tax becomes due 

when a particular conversion is made or an ad-valorem tax on conversion profits is 

levied.) Thus, it is possible – in principle – to pose a very general problem in which 

optimal tax policies are selected by picking and choosing from a large menu of such tax 

instruments that can be treated within the model.          

         Special assumptions that are built into the model will limit conclusions we may 

draw about the effects of some taxation schemes. For example, the model treats real 

estate consumers as having linear-in-income utility functions.14 Hence, there would be no  

income effects from certain taxes/subsidies on consumers (such as income taxes). The  

same result holds on the supply side as well, because we have modeled investors as risk  

neutral.    

       To keep things simple, I will here focus only on ad-valorem taxes on asset prices. 

Thus, suppose that  is the tax rate on a type k asset (vacant land or building) in year t. ktθ
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Then, each asset of type k has a tax-cost of  . Equation (9), the asset-bid price (or 

asset valuation) equation now becomes modified by deducting the cost of the tax 

(assumed paid at the beginning of each year). This modified equation is: 
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The revenue raised in year t  is then . We can now set up a welfare 

optimization problem over the infinite time horizon t=0,1,2…T, T+1, T+2,…∞, where T 

is the terminal time T of phase I. 
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14 It is easy to change utility functions and allow income effects. See Anas and Arnott (1993c, 1994)) 
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The objective function, which measures social welfare, consists of the three additive 

terms. Of these, the first is the non-stationary consumer surplus series of phase one 

discounted to the initial point in time. The second is the stationary-phase (phase 2) 

consumer surplus series discounted to the initial point in time. Investors make zero profit 

in each year and, because this holds by the equations (9′) and (12′) of the dynamic market 

equilibrium, their profits need not be included in the social welfare function. However, 

the introduction of taxes will alter initial asset prices and, under the assumption that the 

tax policy is unanticipated, windfall gains or losses will accrue to asset holders at time 

t=0. Hence, the level of initial asset prices must be included as the third additive term in 

(11). The constraints (11), (12′) and (13) are the stationary market equilibrium conditions 

modified for taxes. They insure that the stationary state is a market equilibrium 

conditional on the tax rates. Similarly, (8), (9′) and (10) insure that the non-stationary 

market equilibrium also holds conditional on the tax rates. The last constraint (14) 

requires that a present value tax revenue of ℜ > 0 is raised. Note that there is no 

restriction on the signs of the tax rates. Some can be negative (subsidies) while others  

are positive, but clearly at least one must be positive. 

       An alternative sub-optimal formulation would require that pre-specified revenue 

constraints must be met each year by a myopic tax planner: for 

year t. The sub-optimality arises from the fact that the myopic tax planner cannot shift 

funds between periods but must balance his budget every period. This problem is 

considerably easier to solve because a present value budget need not be balanced across 

∑ =
=ℜ−
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time periods. One could first solve the stationary state problem with the budget for that 

year imposed and would find the stocks, rents, asset prices and tax rates for the stationary 

state which maximized the stationary state’s consumer surplus plus aggregate asset 

values. This would determine terminal asset prices conditional on terminal-year optimal 

taxes. Then one would begin a loop of backward-in-time and forward-in-time recursions 

to find stocks and asset prices together with tax rates for each year by maximizing that 

year’s objective and still meeting the revenue target for that year. This solution procedure 

is similar to the one without taxes discussed earlier (see Figure 2) except that taxes are 

also calculated at each step.   

       A comment is in order here about welfare comparisons (deadweight loss 

measurement) for dynamic optimal taxation problems such as those discussed above. 

Figure 4 illustrates the key point. Consider first curve I, the path of the discounted 

welfare level each year when there is no tax policy in place. This welfare path is Pareto 

efficient. Now introduce any tax policy such as those discussed above. To capture the 

uses of tax revenue, the present value tax revenue ℜ can simply be added to the 

optimized value of the consumer surplus plus initial asset values since, with linear 

utilities and risk-neutral investors, the redistribution of tax revenue does not affect the 

present value welfare level. Clearly, the optimal tax policy is distortionary (has a 

deadweight loss). Therefore, curve II is either below curve I for each t, or – in the case 

shown in Figure 4 – curve II cuts curve I potentially several times (only once in the 

figure). In the case of the figure, area A must be larger than area B since the optimal tax 

policy must be distorting in present value terms. (An alternative possibility is that curve 

II starts above curve I but cuts it from above. In that case, thee corresponding area B 
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would have to be larger than the corresponding area A.) The case illustrated in the figure 

is interesting because the distortionary tax policy yields improved welfare sometime in 

the future and, in particular, in the eventual stationary state. This possibility appears 

counterintuitive at first. But the reason for it has to do with the fact that the path of the 

building stock is changed by the tax policy. At any point in time, the building stocks on 

curve I and curve II will not be the same. One can think up the following scenario that 

would be a real example of this. Suppose that the optimal tax policy calls for high taxes 

on vacant land relative to taxes on buildings. This increases the investor’s cost of holding 

vacant land which, in turn, causes buildings to be built early on so that the stock on curve 

II eventually exceeds the stock on curve I for the corresponding later time periods. This 

creates an inefficient abundance of buildings later on, causing rents to be lower and 

consumer surplus to be higher. Although consumer surplus is eventually higher on curve 

II, we know that the optimal tax policy causes a distortion in present value terms. Hence, 

area B must be smaller than area A. The example of the figure illustrates the pitfalls of 

looking only at long run benefits, ignoring the transient benefits along the adjustment 

path. It underscores that policies must be compared in terms of net present value benefits. 

5. Closing comments 

The algorithm described in Appendix B has been designed to examine the effects of  

ad-valorem taxes on types of buildings and vacant land within the simulation model 

discussed in Section 2. It calculates the deadweight losses arising from such tax systems 

with exogenously specified tax rates. The optimal tax policy problem posed in Section 3 

has not yet been implemented as an algorithm. When so implemented, it would allow 

direct derivation of the optimal tax policy and, hence, would allow us to investigate how 



 30 

optimal tax policies consisting of taxes on buildings and land should vary according to 

the circumstances of particular metropolitan land markets. Given that truly neutral and 

efficient taxes on land are controversial on the basis of equity or simply difficult to 

implement, it is important to be able to compare the efficiency of alternative tax systems.   
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Appendix A: The Multinomial Logit Calculus 

 
A number of references are available detailing equivalent derivations of the multinomial 
logit model and the associated welfare measures: for example, McFadden (1974) or 
Anderson et. al. (1992). This Appendix follows the approach of the latter. Part (b), below, 
can also be proved by the approach of Small and Rosen (1981) who integrated the choice 
probability function to show that the expression in (b) is the (consumer or producer) 
surplus measure. 
  
Derivation of the Multinomial Logit Model: Suppose that the payoffs (utilities or 
profits) of i = 1,…,n discrete alternatives are measured by Xi + xi where each −∞ < xi  < 
+∞ is distributed i.i.d. among the decision making agents according to the cumulative 

density G(•) of the Gumbel given by (1), with dispersion parameter γ, and mode η = 
γ
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Proof of (b): The procedure outlined in Anderson at. al. (1992) is to derive the 
cumulative density,  of  the random variable  and then calculate 

its expected value as  
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       The choice probabilities (2), (4) and (6) are obtained by applying the procedure of 
part (a). To get (2), the consumer choice probabilities, define  and , i = 
1,…,K for each ht. To get (4), the occupancy/vacancy probabilities, define 

, , ,  for each kt. To get (6), the investor's 

conversion probabilities, define 
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The expected values (3), (5) and (7) are derived by applying the procedure of part (b). 
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Appendix B: FORTRAN code for solving dynamic simulation model of real estate 
markets with taxes on buildings and land 
 
Anas and Choi (2001) describes the FORTRAN code we have developed to solve 
dynamic real estate market problems described by equations (8)-(13), with exogenously 
specified tax rates. The algorithm is designed to solve problems conforming either to the 
commodity hierarchy cycle of Figure 1a or to the pattern of Figure 1b in which buildings 
differ according to structural densities. In each of these two cases, multiple land markets 
can be included, each land market containing potentially all building types.  
 
Our algorithm first solves the Phase 2 stationary equilibrium given the exogenous 
variables and calibrated parameters. Then, the algorithm solves the first phase non-
stationary dynamic equilibrium including an accurate time horizon truncation which 
determines T, the time at which the non-stationary phase converges to the stationary 
phase. The algorithm computes the deadweight losses of the pre-specified tax schemes.  
 
Under a different operating option, the user specifies key data and key elasticities of 
demand and supply. Given these inputs, the dynamic simulation model calibrates itself 
and is then poised to perform simulations with these calibrated coefficients. A variety of 
exogenous inputs including taxes can be altered to explore their inter-temporal effects on 
the real estate market. 
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APPENDIX C: Comparative Static Analysis of the Effects of the Taxes 
 
 
The comparative static analysis of (14)-(19) with respect to  is as follows: θ
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probabilities is not extremely large. Calculating the effect on rent we get: 
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The comparative statics with respect to the unconventional tax on land only follows a 
similar procedure and is intuitive given the above results. The matrix equation is: 
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Time State of information Investor and consumer actions 
   t R t ,V t are revealed. Investors know the 

expected values C t , D t  of conversion 
and maintenance costs and their 
dispersions Φ t  and φ t .  

1+

 
Consumers earn their income y t  and 
know their taste premium values of 
housing submarkets Y t . 

Risk neutral investors bid on 
housing units and land under 
perfect foresight on prices and 
under uncertainty about costs, 
determining asset prices V t , on the 
basis of R t ,V t ,C t , D t , Φ t and 
φ t . 

1+

t+ε Idiosyncratic maintenance costs d t for 
vacancy and occupancy are revealed for 
each housing unit as a draw from the 
double exponential with dispersions φ t . 
 
Idiosyncratic tastes u t are revealed to 
consumers as draws from the double 
exponential with dispersions δ t . 

Investors decide, based on rents,  
R t , and revealed maintenance 
costs, D t +d t ,whether to keep a unit 
vacant or let it to a tenant. 
 
Consumers choose to rent in the 
most-preferred submarket, on the 
basis of net income y t −R t , taste 
premia, Y t , and the revealed 
idiosyncratic utilities u t . 

t+1−ε Idiosyncratic conversion costs, c t , are 
revealed for each feasible k  )(kBk ∈→ ′
conversion of a unit, as a draw from the 
double exponential with dispersions Φ t . 

Investors undertake the most 
profitable conversion on the basis 
of the revealed conversion costs 
C t +c t  and V t . 1+

t+1 R t ,V t are revealed…… 1+ 2+ Risk neutral investors bid on 
housing units and land…… 

 
TABLE 1: Timeline indicating flow of information and actions of market agents within 
one year: from time t → t+1. (Note: ε>0 is a very small constant.) 
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         Quality 1 
         k = 1; m  101=

         Quality 2 
       k = 2; m  102=

            Land 
      k = 0; m  100=

        Quality 3 
     k = 3; m  103=

FIGURE 1a: Buildings are of the same structural density but differ only in quality. They deteriorate in quality, 
become demolished at the lowest quality and new housing is built at the highest quality. B(0) ={0,3}, B(1) 
={0,1}, B(2) ={1,2}, B(3) ={2,3}.   

      
     High density  
    k = 1; m  8/101=

 
Medium density  

    k = 2; m  4/102=

Land 
       k = 0; m  100=

 
       Low density  
       k = 3; m  103=

FIGURE 1b: Buildings do not deteriorate in quality. Buildings are of different structural densities that
cannot be directly converted to one another. Each housing type can be demolished and any of the three 
types can be rebuilt in its place. B(0) ={0,1,2,3}, B(1) ={0,1}, B(2) ={0,2}, B(3) ={0,3}. 
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 Asset pricing [(9) solved recursively 
backward in time (t =T-1,...,0)]  
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Stock adjustment [(10) solved 
recursively forward in time (t = 1,...,T)] 
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Exogenous inputs: y t , Y t , β, δ t ; ∀t  

Market clearing [eq. (8) solved 
ultaneously for all t = 0,…,T] sim
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  [V t]  1

0
−
=

T
t

Stocks 
  [S ]  t

T
t 1=

Rents 
 [R ]   t

T
t 0=

 Exogenous inputs: S ,Φ t ,C t ,m, r ; ∀t  0

Exogenous inputs: V ,Φ t ,C t ,m, r, φ t , D t ; ∀t  T

FIGURE 2: Block-recursive structure of dynamic housing market equilibrium. 
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Stock,  Skt 

Stationary state (Phase two) 

Non-stationary adjustment (Phase one) 

Sk
* 

SkT+1 

Sk0 

0        1         2           3         4           5          6          T                 T+1                  Time, t 

FIGURE 3: The terminal period gap in stock of type k with predetermined terminal period 
T, is |Sk

*−   SkT+1|, where Sk
*  is the stationary equilibrium stock. The longer the choice of 

terminal time period, T, the smaller the gap becomes. 
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   Welfare at t 

Discounted to
   Time t = 0 

t* Time T^ 

B 

A 

Curve I: Path of welfare without distortionary  tax policy 

Curve II: Path of welfare with distortionary tax  policy 

AREA(A) > AREA(B) 

FIGURE 4: Negative net benefits of a distortionary tax policy in the dynamic model 
with convergence to stationary state at time T^. In this example, positive net benefits 
occur after time t*   including T^ at which time stationary state is reached. But these 
positive net benefits are outweighed by the negative net benefits which occur in 0 < t 
< t*.  
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