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Abstract 

Using a 200-city sample that was carefully selected to represent the universe of 4,231 cities in in 
2010, we generated measures of cities’ areas and populations at three points in time over a 24-
year period. The 600 observations were used to calculate the growth rates of cities’ areas, or their 
urban extents, and their populations, over three analysis periods: 1990 – 2000, 2000 – 2014, and 
1990 – 2014. During 2000 – 2014, the most recent period, the median urban extent growth rate 
for less developed countries cities was 5.7 percent per year compared to 1.1 percent per year in 
more developed countries cities and 3.1 percent per year in all cities. Average growth rates were 
higher. A quantity that grows at 5.7 percent per year doubles in size in 12 years and triples in 
size in 19 years. The median population growth rate over this period in less developed country 
cities was 3.6 percent per year, compared to 0.7 percent per year in more developed country 
cities and 2.2 percent per year in all cities. We observed statistically significant declines in the 
average urban extent growth rate and the average population growth rate from 1990 – 2000 to 
2000 – 2014 across all three analysis categories. Despite these declines, the average urban extent 
growth rate was greater than the average population growth rate at all time periods in each of the 
categories and this difference was statistically significant. The factors that could explain 
observed variation in urban extent and expansion were explored in multiple regression models. 
Population and income were the overwhelmingly dominant factors. These two factors alone 
explained 85 percent and 65 percent of the variation in urban extent and urban expansion in the 
200-city sample. This analysis is very similar to the proposed UN Sustainable Development Goal 
(SDG) indicator 11.3.1 and offers a first glimpse at globally representative findings. The global 
sample of cities provides a platform that could be used to monitor progress of other SDG 
indicators measures as well.   
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Urban Expansion in a Global Sample of Cities, 1990 - 2014 
 
 

Introduction 
 

In 2015, the human population of the planet was 7.3 billion. More than half of that total (3.96 
billion or 54%) lived in cities and towns and that share is expected grow over the coming 
decades (United Nations 2014). By 2050, the world’s urban population is projected to grow by 
60%, adding 2.38 billion people to cities and towns. That increase will be highly skewed toward 
less developed countries, which will absorb 95 percent of all new urban dwellers. In other words, 
between 2015 and 2050, 19 persons will have been added to the urban population in less 
developed countries for every single person added to the urban population in more developed 
countries. And yet, surprisingly perhaps, the urbanization of our planet is slowing down. While 
the absolute number of people living in cities and towns continues to rise, the rate of that 
increase is decreasing and it will continue to decrease into the future. The movement of people 
from living closer to the land to living closer to each other, a process that began in earnest 
around the turn of the 19th century when only 5 percent of all people lived in cities and towns, is 
likely to end by 2100, when that number approaches 75-80 percent.  
 
What are the implications of this added population to cities and towns, more than two billion 
people by 2050 and another billion and a half by the end of the century?1 For one, it has helped 
bring about new views on the relation of cities and towns to development policy and to their 
roles as pathways to sustainable development in particular (Parnell 2016; Barnett and Parnell 
2016). A stand-alone goal for cities and human settlements in the United Nation’s post-2015 
development agenda, the 2030 Agenda for Sustainable Development, was a historic first, and the 
goal’s ten targets and fifteen indicator measures suggest global commitment to action and 
reporting at the city level.  
 
Within Sustainable Development Goal (SDG) number 11, indicator measure 11.3.1, “Ratio of 
land consumption rate to population growth rate,” makes information about the areas cities 
occupy, their populations, and their change over time, essential inputs to the reporting process. 
Shifting the discussion of urbanization toward a land-based perspective, effectively framing 
urbanization and its challenges in spatial terms, as target 11.3 begins to do, makes confronting 
the challenges of urbanization, we believe, a more manageable task. Namely, the growth of 
population cannot be effectively guided by policy but cities occupy land, and programs aimed at 
urban land, or at the conversion of land to urban use – for housing, public works, public open 
spaces, and other public amenities, is very much guided by public policy.  
 
We know that cities and towns will absorb great numbers of new residents and that this entails 
the occupation of existing and new lands. But how much land? This is where our interest in 
studying the change in cities’ areas and populations lies. When we have globally representative 
and historical data on this relationship and when we investigate the factors that influence it, we 
                                                            
1 Assuming an urban population growth rate of 0.5 percent between 2050 and 2100. 
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introduce an evidence-based approach to understanding how much additional land cities are 
likely to occupy in the future. This knowledge can be applied in planning and preparing for the 
expansion of cities, so that decisions of how to respond proactively are based on realistic 
assumptions and targets.   
 
In this paper, we report our findings on changes in the areas and populations of cities, in a global 
sample of 200 cities over the 1990 – 2014 period. While the data and analysis we generate is 
similar to that associated with indicator 11.3.1, our motivation for undertaking this work is 
different. 
 
Our motivation is a pragmatic one. Making minimal preparations for land and infrastructure in 
advance of development is much easier, from financial and logistical points of view, when land 
on the periphery is unoccupied and relatively cheap. Once these areas are occupied, it is very 
difficult to relocate populations and it is expensive to reconfigure areas that are already built. In 
rapidly growing cities and towns, failure to properly service land, secure public open space, and 
obtain rights of way for roads and infrastructure in advance of development can have negative 
and lasting consequences for individuals, the economy, and the environment.  
 
How much additional area rapidly growing cities will add need not be a mystery, however. We 
shed light on this question through our analysis. The basis of our investigation is a 200-city 
sample that was carefully selected from the universe of 4,231 cities with populations over 
100,000 in the year 2010. The sample includes cities of all populations sizes, in every world 
region, in countries large and small. We studied the same 200 cities at three time points, which 
allowed us to measure and compare change over time. A city’s urban extent, which defines the 
hard edge that was needed to bound the area and population calculations for a given city at a 
given date, was identified using a methodology developed by the research team.  
 
A median urban extent growth rate of 3.1 percent per year was observed for all cities over the 
2000 – 2014 period compared to an average growth rate of 5.0 percent per year. The summary 
values for all cities mask important differences between different groups of cities. In less 
developed country cities, the median urban extent growth rate was 5.7 percent per year compared 
to an average rate of 6.2 percent per year, while in more developed country cities, the median 
and average rates were 1.1 percent per year and 1.8 percent per year respectively. A growth rate 
of 5.7 percent per year implies a doubling time of 12 years and a tripling time of 19 years. A 
growth rate of 1.1 percent per year implies a doubling time of 64 years and a tripling time of 100 
years. The situation in these two groups of cities is clearly very different.  
 
Average urban extent and population growth rates were found to have declined from the 1990 – 
2000 to the 2000 – 2014 period. Further declines in these growth rates can be expected if the 
trend continues. The observed declines did not affect the relationship between the urban extent 
growth rate and the population growth rate in cities, however. We looked at the difference 
between the urban extent growth rate and the population growth rate at the city level and tested 
whether the average difference for cities was significantly different than zero. We concluded that 
urban extent grew faster than population, on average, in both less developed and more developed 
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country cities, at both time periods, and that this difference was statistically significant.  We 
might also expect this trend to continue in the near future, barring major changes.  
 
An exploration into the drivers of urban extent and expansion pointed to two main explanatory 
factors: population and income. As cities grow in population and as their inhabitants become 
wealthier they occupy more area. These two factors alone could explain 85 percent of observed 
variation in models of urban extent and 65 percent of variation in urban expansion. The inclusion 
of additional factors, related to geography and climate, transport cost, building regulations, 
agricultural land, and global integration, improved the models’ explanatory power very 
marginally. 
 
The analysis presented here represents work associated with the first of a three-phase research 
effort entitled Monitoring Global Urban Expansion. In Phase I we mapped and measured the 
built-up areas and open spaces of the 200 cities, or their urban extents, and calculated their 
populations, to obtain estimates of recent expansion, density decline, compactness, and 
fragmentation. In Phase II we compared the spatial organization of streets and blocks in cities’ 
1990 – 2014 expansion areas to their pre-1990 areas to understand how block sizes, street 
widths, the share of the share of the land in streets, road density, and street grids have changed 
over time. In Phase III we engaged local experts to complete surveys on housing affordability 
and the rules and regulations governing land and housing in cities and their expansion areas, to 
better understand how the two interact.  Findings associated with different aspects of these three 
phases will be presented in a series of working papers.    
 
The paper is structured as follows. Section 2 describes the methods and data that were used to 
generate urban extent and population data for the 200 cities. Section 3 presents findings for urban 
extent and population growth rates and their change over time in all cities, less developed 
country cities, and more developed country cities. Section 4 discusses the rationale, data, and 
results for models of urban extent and expansion. Section 5 concludes.  
 

Empirical Framework 
 

Selecting the 200-City Sample 
 
The Universe of Cities 
 
The study of urbanization trends has typically occurred at the country level, based on a 
distinction between urban and rural population that is made by national statistical offices. Since 
countries apply different criteria to make this urban-rural distinction, such as different population 
thresholds, and since the results are lumped together into a single national value, it is difficult to 
advance our knowledge about urbanization attributes and trends in cities when we use this 
country-based data (Cohen 2003). 
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In this work, we have focused on cities as the unit of analysis. How many cities in the world are 
there? There is no simple answer to this question. Just as there are many ways to define the 
urban-rural distinction there are many ways to define a city, including any combination of 
population thresholds, administrative boundaries, density thresholds, and commuting and activity 
patterns (Parr 2007; OECD 2012; Uchida and Nelson 2008; Deuskar and Stewart 2016; and 
Taubenbock et al. 2014). Identifying all cities in the world required a definition that we could 
apply universally with existing data sources.  
 
We chose to define cities by their geographical extents and by a population threshold of 100,000 
in the year 2010. By geographical extent, we refer to the relatively contiguous built-up area 
extending out of a historical city center. The extent may stretch across many municipalities and 
is not constrained by administrative boundaries. The extent is visible to the naked eye using high 
resolution satellite imagery, such as that which can be seen on Google Earth.  What the 
appropriate population threshold should be for defining cities is fairly subjective but few would 
disagree that a settlement with 100,000 inhabitants constitutes a city.  
 
It was necessary to first identify candidate cities from lists of cities, municipalities, metropolitan 
areas and urban agglomerations containing a population value at 2010, or for which a population 
value at 2010 could be estimated. The two main data sources for this exercise were the UN 
Population Division, which provided data for settlements with populations of at least 300,000, 
and the website www.citypopulation.de, which reproduces census data and maps for all 
countries. Information from these lists was supplemented with internet research.  According to 
official lists, China had only 662 cities in 2010. We identified 1,029 settlements in China with 
contiguous geographic extents that we believed had populations over 1000,000. The Chinese 
Academy of Sciences helped us estimate their populations.  
 
Each candidate city was viewed on Google Earth to confirm its existence and to determine 
whether it was part of a larger agglomeration. Only cities that were not part of a larger 
agglomeration were included in our final list. This checking procedure led to the merging of 
many observations that were considered to be part of the same geographical extent as well as the 
exclusion of candidate cities that did not meet our criteria. For the largest agglomerated areas, 
such as the northeast corridor in the United States, and in many other locations as well, we used 
metropolitan area boundaries to limit the extent of a city. In doing so, we imply that the 
geographical extent of cities cannot extend forever and that they should roughly correspond to 
commuting areas or labor markets.    
   
When the procedure was completed, our 2010 universe of cities contained 4,231 free standing 
cities with populations of at least 100,000. The locations of these cities are shown in Figure 1.  
 
 
 
 
 
 

http://www.citypopulation.de/
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Figure 1: All 4,231 cities comprising the 2010 universe of cities. 
 

 
 
 
The Global Sample of Cities 
 
It is not possible to study each observation in the universe of cities and perhaps it should not be 
necessary, so long as there is a carefully constructed sample whose results can be generalized to 
the universe of cities as a whole. If we were to take a simple random sample of 200 cities from 
the universe of cities, we would end up with many small cities due to the fact that there are many 
more smaller cities than larger cities, and many cities in China, as approximately one quarter of 
the world’s cities are located there. If we would like to know something about cities of different 
population sizes, in different world regions, and in countries large and small, it is necessary to 
organize the universe of cities into the relevant categories and to sample from these categories. 
  
We organized the universe of cities along three strata with selecting a sample in mind. The first 
stratum was for the world region, of which there were eight: (1) East Asia and the Pacific, (2) 
Southeast Asia, (3) South and Central Asia, (4) Western Asia and North Africa, (5) Sub-Saharan 
Africa, (6) Latin America and the Caribbean, (7) Europe and Japan, and (8) Land-Rich 
Developed Countries. Land-rich developed countries include the United States, Canada, 
Australia, and New Zealand. The regional categories roughly follow the divisions in the United 
Nation’s World Urbanization Prospects. That report also organizes the world into two mega-
regions, more developed and less developed. The more developed regions category includes 
countries in North America, Australia, New Zealand, Europe, and Japan.  The less developed 
region includes all other countries, even though some of them have high per capita incomes. We 
make use of the more developed less developed distinction later in our analysis. Cities were 
sampled from the eight regions in proportion to the population of the universe of cities in these 
regions. 
 
The second stratum was for city population size. We created four categories of populations size 
roughly corresponding to small, medium, large, and very large: (1) 100,000 – 427,000, (2) 
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427,001 – 1,570,000, (3) 1,570,001 – 5,715,000, and (4) 5,715,001 and above. The total 
population of the universe of cities in each of these categories was approximately the same, 
about 622 million. An approximately equal number of cities was sampled for each of the four 
population size categories.    
 
The third stratum was included so that the sample would contain cities from countries with few 
cities as well as cities from countries with many cities. The number of cities in the country 
stratum contained three categories: (1) 1 – 9 cities, (2) 10 – 19 cities, and (3) 20 or more cities. 
Cities were sampled from these categories in proportion to the population of the universe of 
cities in these categories. 
 
We can combine the eight world regions, the four population size categories, and the three 
categories for the number of cities in the country to create 96 subcategories, or boxes, that 
represent every possible combination of world region – population size – number of cities in the 
country. Every observation in the universe of cities must fall into one of these boxes according to 
its region, its population, and the number of cities in the country to which it belongs. After we 
distributed all 4,231 cities among the 96 boxes there were 76 non-empty boxes. We selected 
cities at random from each box in rough proportion to the total population of the box. Ultimately, 
we selected cities from 61 boxes. The 15 boxes that were not directly represented by the sample 
contained 3 percent of the cities and 3 percent of the population in the universe of cities. We later 
added the information from these boxes to nearby boxes with the same region and with similar 
population and number of cities in the country attributes, so that these cities and their populations 
would be represented by the sample in later calculations. In this way, the entire universe of cities 
was represented by the sample of cities. The locations of the 200 sample cities and the eight 
world regions, in different colors, are shown in Figure 2.  
 
Figure 2: The locations of the 200 sample cities and the eight world regions.  
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Weighting the Sample of Cities 
 
Each of the 96 boxes from which the 200-city sample was selected is associated with a total 
number of cities and a total population. Consider a box that was used in our study, it contained 
210 cities and the combined population of these cities was approximately 45 million. We 
sampled four cities from this box. Thus each of the four cities represents approximately 50 cities 
in its box. The combined population of the four sampled cities was 1.1 million. Thus each person 
in the sample in this box represents approximately 40 people in the universe of cities in this box. 
  
We can expand the findings for the sample cities in this box to represent either the total number 
of cities in this box or the total population in this box. The values of 50 and 40 are in effect city-
based and population-based weights, respectively. When we calculate a given metric for all cities 
in the sample, like the urban extent growth rate, and when we apply the same type of weight to 
all cities, we obtain the global weighted value for that metric. In this paper we have applied city-
based weights to all calculations. 
 
Measuring Urban Extent 
 
The process of creating urban extent files for sample cities was organized into seven steps: (1) 
study area assessment, (2) spatial population data collection, (3) study area definition, (4) 
Landsat data collection, (5) Landsat classification, (6) landscape analysis, and (7) urban extent 
rule. A brief description of each step is outlined below.  
 
Study Area Assessment 
 
Our first task was to gauge how large an area the contiguous built up area extending out of an 
established historical core occupied circa 2014. This initial step was necessary to determine the 
area over which spatially explicit population data and Landsat satellite imagery would be needed 
to complete the analysis for each city.  This task was undertaken by examining global nighttime 
light data for 2013 produced by the Earth Observation Group at the National Geophysical Data 
Center of the National Oceanographic and Atmospheric Administration.  Stable nighttime light 
data (approximately 30m resolution at the equator) is publicly available and was downloaded 
from htpp://ngcd.noaa.gov/eog/dmsp.html. Since nighttime light data is known to overestimate 
built-up area extent, we believed it could be used to provide a sufficiently large enough area on 
which to base our population and satellite imagery data collection (Potere et al. 2009). Validation 
of the initial study area, to confirm the presence of built-up area, was conducted by viewing 
contemporaneous high-resolution satellite imagery over the same areas on Google Earth. The 
initial study area was increased or decreased based on the Google Earth comparison.  
 
Spatial Population Data Collection 
 
The twin goals of the analysis were to create urban extent boundaries for each city and to assign 
a population value to the urban extent. To assign a population value, we sought spatially explicit 
population data in the form of administrative boundaries, census enumeration zones, municipal 
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districts, and city wards. Each of these spatial units had to list a residential population value 
associated with a date to be relevant for the analysis. Population estimates were sought for three 
dates: circa 1990, circa 2000, and circa 2014. To the extent that it was possible, we tried to use 
the same spatial units over time.  Spatially explicit population data was used to apportion 
population to the urban extent using a procedure described in following section. Spatially explicit 
population data is typically made available by national or municipal governments in formats that 
can be visualized and manipulated in GIS software. When possible, we obtained the data directly 
from the relevant governmental agencies. Several non-governmental organizations that house 
repositories of population data, including the Socioeconomic Data and Applications Center 
(SEDAC) at Columbia University, the Chinese Academy of Sciences, the European 
Commission, and the website http://www.citypopulation.de were also consulted.  Many times, 
however, especially in places with poor data programs, we communicated with scholars, 
development professionals, and local experts who provided us with maps, reports, and other 
documentation that we used to construct spatially explicit estimates over the area of interest. This 
sometimes required georeferencing and digitizing the material and assigning zones the relevant 
population values.   
 
Study Area Definition 
 
The delineation of the urban extent does not depend on population data directly; indeed, a key 
feature of this analysis is that urban extent boundaries are neither constrained nor defined by any 
type of boundary or zone, population or otherwise. To identify a city’s urban extent, however, 
we needed to collect, classify, and analyze Landsat satellite imagery. Furthermore, to apportion 
population to the urban extent, we needed the set of population zones that completely contained 
the urban extent. To streamline the process of satellite imagery collection and analysis, urban 
extent creation, and population apportionment, we defined the study area by the set of population 
zones we believed would completely contain the urban extent. This decision was informed by 
our initial study area assessment and was almost always sufficient to complete the analysis of a 
city. In a handful of cases, however, the final definition of the study area was determined through 
an iterative process. More precisely, upon creating the urban extent, we sometimes observed that 
it ran up against the study area boundary rather than terminating successfully within the study 
area. In these cases, we acquired additional population data to increase the size of the study area. 
There were a handful of exceptions to this rule, where the iterative process would have led to 
urban extents that contained more than one functional urban area or more than one metropolitan 
labor market. In these cases, we kept the study area boundaries fixed, using local definitions of 
metropolitan area boundaries or basing the decision on expert opinion.    
 
Landsat Data Collection 
 
Landsat scenes from Landsat 4, 5, 7, and 8 satellites, corresponding to dates circa 1990, 2000, 
and 2014 were downloaded from the United States Geological Survey’s Earth Explorer website: 
https://earthexplorer.usgs.gov. The satellites have revisit times of approximately 16 days.  The 
Earth Explorer interface allows for the user to specify an area of interest and to preview all 
relevant Landsat scenes over this area. Scenes that were cloud free, especially in and around the 

http://www.citypopulation.de/
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cities’ study areas, were selected for analysis. This sometimes resulted in the selection of images 
that were not exactly at the target dates of 1990, 2000, and 2014 but a few years before or after. 
Actual imagery dates associated with a particular city are the T1, T2, and T3 associated with that 
city in our analysis.  Scenes measure 185 x 185 kilometers. The basic building block of a scene is 
a Landsat pixel, which has a typical size of 30-by-30 meters.  
 
Landsat Classification 
 
Study area boundaries were superimposed on Landsat scenes corresponding to the three time 
periods. The intersected area, with an additional 1 km buffer, was selected for classification. Our 
objective was to extract three types of land cover categories from the Landsat images: water, 
built-up, and other/open space. Water refers to any Landsat pixel that is comprised of surface 
 water, including oceans, lakes, ponds, reservoirs, rivers, streams, canals, pools, and flooded  
wetlands. Built-up refers to any Landsat pixel that is comprised of structures or surfaces 
constructed by humans, including buildings, roads, parking lots, racetracks, railroads, and docks. 
Other/open space refers to any Landsat pixel comprised of vegetated surfaces and barren lands, 
including forests, agricultural crops, fallow agricultural fields, wetlands, grass lands, desert 
lands, beaches, mountaintops, and other land cover types that are neither water nor built-up. For 
a review of remote sensing concepts and methods and an explanation of the unsupervised 
classification technique employed in this analysis, including post classification processing and 
editing, see Angel et al. (2005), Chapter 3. The three-way classification of Baku, Azerbaijan into 
water, open space, and built-up area is shown in Figures 3 and 4. 
 
Figure 3: The three-way classification of Baku, Azerbaijan into water (blue), open space 
(brown), and built-up (red).  
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Figure 4: A close up of Baku’s three-way classification illustrating the pixelated nature of 
the image. 
 

 
 
Landscape Analysis 
 
The three-way classification of water, built-up, and open space was the input into a secondary 
analysis. This secondary analysis, or landscape analysis, sub-classified built-up and open space 
pixels into three categories each, allowing us to differentiate among different types of built-up 
and open space pixels. The sub-classification of the built-up class was based on the spatial 
density of built-up pixels within the Walking Distance Circle, defined as the 1 km2 circle about a 
pixel. The three categories of built-up produced by the landscape analysis include: 
 

1. Urban pixels, where the majority (> 50%) of pixels within the Walking Distance Circle 
are built up; 

2. Suburban pixels, where 25-50% of pixels within the Walking Distance Circle are built-
up; and 

3. Rural pixels, where < 25% of pixels within the Walking Distance Circle are built-up. 
 

The use of the terms urban, suburban, and rural to describe built-up pixels across the study area 
does not imply literal interpretations of how these terms manifest spatially. They were used in 
the sense that the areas they refer to generally correspond to our perceptions of what constitutes 
urban, suburban, and rural area in many cities throughout the world. The thresholds for the 
different categories are arbitrary and a different set of cutoffs would change the proportion of 
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built up pixels in each category. We settled on these particular cutoff after experimenting with 
different combinations of values in many cities, examining the output, and deciding which 
combination of values was associated with the most consistent and intuitive results.  
 
Figure 5: The classification of built up area into urban pixels (dark red), suburban pixels 
(red), and rural pixels (ochre) in Baku in July 1989 (left) and August 2014 (right). 
 

 

 
The three categories of open-space produced by the landscape analysis include: 
 

1. Fringe open space pixels, all open space pixels within 100 meters of urban and suburban 
built-up pixels; 

2. Captured open space pixels, clusters of open space pixels completely surrounded by 
fringe open space pixels less than 200 hectares in area; and 

3. Rural open space pixels, all open space pixels that were neither fringe nor captured. 
 
The rationale for the fringe open space category comes from the field of landscape ecology, 
where different studies have shown that settlements and built-up areas affect vegetation and 
wildlife along their edges, often in a belt up to 100m wide (Chen Franklin and Spies 1992; 
Winter Johnson and Faaborg 2000). Although captured open space is beyond the 100m belt, we 
identify it as a separate category based on the idea it is open space that may be degraded by 
isolation from other open spaces. Taken together, the fringe and captured open space within a 
study area constitute urbanized open space. Urbanized open space and rural open space together 
make up all of the open space within the study area. 
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Figure 6: The classification of open space into fringe open space (light green), captured 
open space (bright green), and rural open space (dark green) in Baku in July 1989 (left) 
and August 2014 (right).   
 

  
 
Urban Extent Rule 
 
The landscape analysis differentiates the study area in a way that facilitates the creation of rules 
that can be used to identify urban clusters. We define urban clusters as discrete patches of 
urbanized open space that by definition contain urban and suburban built-up pixels. There is no 
limit to the number of urban clusters within a study area; sometimes there is only one cluster and 
sometimes there are thousands. In Baku, Figure 6 suggests that were dozens of urban clusters in 
1989 and 2014. We can see the clusters more clearly in Figure 7 below. As a rule, the cluster 
containing the city hall location, which is usually indicative of a traditional city center and 
central business district, is included in the urban extent. Some of the other urban clusters within 
the study area may also become part of the city’s urban extent. The challenge was to determine 
which other clusters to include. 
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Figure 7: Urban clusters across the Baku study area in July 1989 (left) and August 2014 
(right). 
 

 
 
We employed rules based on the size and geographic proximity of clusters to each other to 
determine whether they should be grouped together into the same urban extent. We used these 
these rules in the absence of globally available data that could be used to measure the strength of 
commuting ties between clusters, for example, or local knowledge about whether separate 
clusters should be considered to be one or two distinct cities.  
 
The decision of whether to group individual clusters together depended on an inclusion rule. We 
first generated a buffer around each cluster where the edge of the buffer area is always 
equidistant from edge of the cluster. The buffer distance for a given cluster is a function of the 
combined area of urban and suburban pixels within the cluster, more specifically: 
𝑏𝑏𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  =  6.659�𝐴𝐴𝑢𝑢𝑢𝑢𝑑𝑑 𝐻𝐻𝐴𝐴𝑢𝑢𝑚𝑚𝑢𝑢𝑢𝑢𝑢𝑢+𝑚𝑚𝑢𝑢𝑢𝑢𝑢𝑢𝑚𝑚𝑢𝑢𝑢𝑢𝑢𝑢 . When applied, the buffered area 
contains one-quarter the area of the cluster. The inclusion rule unites all clusters whose buffers 
intersect one another. The new groupings of clusters become urban extents. The urban extent for 
the city in question is the grouping of clusters that contains the city hall location. Figure 8 shows 
final urban extent selections for Baku in 1989 and 2014.  
 
The exact formulation of the inclusion rule was the result of attempts by the research team to 
group urban clusters in a way that corresponded with accepted notions of what constitutes the 
spatial extent or spatial footprint of a city. In a sense, the task was a form of pattern recognition. 
The pattern is sometimes easy to discern, such as a single large cluster completely surrounded by 
open countryside, or it may be more complex, such as clusters of varying sizes in different 
proximities to each other, similar to, but typically more complex than the Baku example. We 
apply a single rule to all situations and while it performs quite well, it is not perfect. In a small 
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handful of cases we made manual corrections to add areas that should have been included in the 
urban extent, such as clusters on opposite sides of water bodies, as was the case in Hong Kong. 
 
Figure 8: The Baku urban extent in July 1989 (left) and August 2014 (right). 
 

 
 
Apportioning Population 
 
The process of assigning, or more precisely, of apportioning population to a city’s urban extent 
entailed three pieces of data: (1) the urban extent boundary file, (2) the set of population zones 
that completely contained the urban extent, and (3) the three-way classification of the study area, 
containing the information for all built-up pixels. 
 
The first task was to interpolate or extrapolate the population data to match the Landsat imagery 
dates. Linear interpolation/extrapolation was used to forward project or backward project 
population data using the closest available data points. In other words, if the imagery date was 
July 1992 but the population data corresponded to January 1990 and January 2000, we used 
linear interpolation to estimate the population of zones at July 1992 based on the populations of 
the zones at January 1990 and January 2000. 
 
Next, we laid the spatially referenced population data over of the urban extent file and over the 
three-way classification. We made the assumption that the population of a zone could be equally 
distributed to all the built-up pixels within that zone as population resides in built areas as 
opposed to open spaces. In reality not all built-up area within a zone may be associated with 
population and the distribution of population within a zone may be unequal. Lacking information 
that could help us make these distinctions, we stuck with our assumption.  
 
Within a given population zone, some built up pixels fall inside the urban extent and some pixels 
fall outside the urban extent. This this is clearly illustrated in Figure 9. Which contains an 
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example for Houston in 2014. Starting in the upper left-hand corner, we see the three-way 
classification for the entire Houston study area. In the upper right hand corner we see Houston’s 
population zones, in yellow, which correspond to census tract boundaries, overlaid on the three-
way classification. In the lower left-hand image, we have introduced the T3 urban extent 
boundary, which lies in between the three-way classification and the population zones. It has 
been made transparent so that the red built-up pixels underneath are visible. In the lower right-
hand corner we see the close up of an individual zone on Houston’s periphery. Some of the red 
pixels in this image belong to the urban extent, namely those that fall within the green 
transparent cluster, some of the red pixels fall outside the urban extent.  
 
Figure 9: The data required for population apportionment in Houston, Texas and an 
example on Houston’s periphery. 
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We focus on the zone that is highlighted in fluorescent blue. Our goal was to estimate the 
population of the urban extent in this zone. If we assume that population is equally distributed 
within a zone, our target value is simply the share of the built-up pixels within the urban extent 
in the zone multiplied by the population of the zone. This is the population that we apportioned 
to the urban extent. We repeated this procedure for each population zone that intersected the 
urban extent. We summed the result to obtain the apportioned urban extent population.  
 

Findings 
 

In this section we present our findings on urban extent and population, and their change over 
time, in the 200-city sample. We first examine the empirical distributions of urban extent and 
population to see whether known probability distributions can explain the observed frequencies 
obtained from our analysis. We then look at urban extent and population change in the sample as 
a whole, in less developed country cities, and in more developed country cities. For each of these 
three categories we conduct the same analyses based on data for three time periods: T1-T2, T2-
T3, and T1-T3, roughly corresponding to 1990 – 2000, 2000 – 2014, and 1990 - 2014. First, we 
look at the distribution of urban extent growth rates and their average and median values. We 
then test whether the change in the urban extent growth rate from T1-T2 to T2-T3 is statistically 
significant, and if so, in what direction. Second, we look at the distribution of population growth 
rates and their average and median values. We then test whether the change in the population 
growth rate from T1-T2 to T2-T3 is statistically significant, and if so, in what direction. Third, 
we look at the city-level pairwise differences between the urban extent growth rate and the 
population growth rate to determine whether urban extent grew at a faster rate than population 
and whether this difference is statistically significant. Finally, we introduce the concept of the 
1990 multiplier as an intuitive way to convey the magnitude of urban extent and population 
change over the study period.  The section concludes with a summary of the findings.   
  
Distributions of Urban Extent and Population 
 
The 200-city sample was drawn from universe of cities which is known to contain many more 
smaller cities than larger cities. This leads to distributions of urban extent and population with 
long right tails. In Figure 10, below, on the left-hand side, we can see the weighted distribution 
of urban extent values for the T3 period. Most values are clustered on the extreme left and fall 
below 200,000 hectares. The tail extends out to 951,000 hectares on the right, corresponding to 
the New York City urban extent. The T1 and T2 distributions of urban extent follow similar 
patterns. We fitted probability distributions to the data using a statistical software package to 
determine whether a known distribution could explain the observed frequencies. At all three time 
periods, the log-normal distribution was associated with the best goodness-of-fit statistics. A log-
normal distribution is one where the log values of the data follow a normal distribution. On the 
right side of Figure 10 we can see the weighted distribution of logged T3 urban extent. The shape 
of this distribution appears to be approximately normal. Using the estimated log-normal 
parameters associated with our data, we could explicitly test the hypothesis that the distribution 
of urban extent follows a log-normal distribution using the Kolmogorov-Smirnov test. For all 
three time periods, we failed to reject the null hypothesis that the data follows a log-normal 
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distribution at a 0.01 significance level. This finding suggests the logged value is appropriate for 
use in regression models where urban extent is the dependent variable.     
 
Figure 10: The untransformed and log-transformed distribution of urban extent in the 200-
city sample. 

 
 
While urban extent values refer to the sample only, we can refer to either the sample or the 
universe of cities when we discuss the distribution of population. In this paper, we focus on the 
sample only. The weighted distribution of urban extent population based on sample cities is 
shown in Figure 11 on the left-hand side. As expected, the values are clustered at the extreme far 
left of the chart. Most cities fall below the 5 million mark and most are much smaller, reinforcing 
the notion that smaller cities, in absolute number, outnumber larger cities. The largest 
observation is 34.8 million, associated with the Tokyo urban extent. As there are only three cities 
in Tokyo’s sampling box, it represents only three out of 4,231 cities, or 0.07% of the universe of 
cities, hence the negligible height of its bar. The T1 and T2 distributions of population show a 
similar pattern. As with urban extent, we tried to fit probability distributions to the data to 
determine whether a known distribution could explain the observed frequencies. At all three time 
periods, the log-normal distribution was associated with the best goodness-of-fit statistics. The 
right hand side of Figure 11 shows the weighted distribution of logged population values. The 
distribution appears less symmetric than that of urban extent and slightly more right skew.  When 
we used the Kolmogorov-Smirnov to evaluate whether the estimated log-normal parameters 
follow a log-normal distribution, the test statistic fell within the critical region (alpha = 0.05), 
and we had to reject the null hypothesis that the data follow a log-normal distribution. A 
companion paper provides a detailed review of the statistical properties of the universe of cities 
and the 200-city sample and we refer the reader to that paper for further information.   
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Figure 11: The untransformed and log-transformed distribution of urban extent 
population in the 200-city sample. 

 
 
Growth Rates 
 
Urban extent and population growth rates 
refer to exponential growth models where the 
growth rate is based on years as the unit of 
time. Unlike linear growth rates, which are 
relatively easy to use to project by how much 
a quantity grows over time, projecting 
exponential growth rates is less intuitive. 
Following a growth curve on the graph in 
Figure 12 we can observe how long it takes, 
in years, for an initial quantity to double by 
identifying where that curve crosses the y-
axis value of 2, and finding the 
corresponding x-axis value. At 5 percent 
growth per year, for example, the initial 
quantity doubles in 13.9 years and triples in 
22 years. The table below the graph provides 
the doubling and tripling times associated 
with growth rates between 3 and 7 percent.  
  

 

 

 

 

Figure 12. Growth rates and their doubling  
and tripling times.  
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All Cities 

 
Urban Extent 
 
Urban extent was measured at three time points for all 200 cities. This allowed us to calcuate the 
growth rate of urban extent over the entire T1-T3 period, roughly a 25 year period, as well as 
over the T1-T2 and T2-T3 periods individually. As the urban extent grows over time, it may 
absorb built-up areas that existed at a previous time period. In this study, urban extent change is 
based on the total increase in the urban extent, which includes both newly converted open space 
to built-up area as well as previously existing built up area – area that was too far away or too 
small to be part of the city’s urban extent at the previous time period. This differs from 
approaches that measure change in urban extent based on the conversion of open space to built-
up area only (Schneider et al. 2015, Mertes et al. 2015).  We have strutcured our analysis in such 
a way that when the urban extent grows from one time period to the next, we can identify which 
added pixels represent newly converted open space and which added pixels represent built-up 
area at the previous time period. We will report on the decomposition of added built-up area into 
four categories: infill, extension, leapfrog, and inclusion, this last category representing 
previously existing built up areas that were included into the urban extent as it grew, in a future 
paper. For all cities we find that on average about one-fifth to one-quarter of the change in the 
urban extent at each time period is inclusion.      
 
Figure 13 shows the weighted distributions of growth rates associated with the three time periods 
in all sample cities. The average annual growth rate is binned along the x-axis and the relative 
frequency of that rate in the universe of cities is represented along the y-axis. It is immediately 
clear that growth rates are not the same everywhere. The distributions are right skew at all three 
time periods, with most rates clustered between 0 and 5 percent. At each time period there are 
also a substantial number of observations with rates above 5 percent. The greater range of x-axis 
vales in T1-T2 indicates higher growth rates observed over this period compared to T2-T3. 
  
Figure 13: The distribution of urban extent growth rates for all cities, T1-T2, T2-T3, and 
T1-T3. 
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Figure 14 shows the weighted average urban 
extent growth rates associated with sample 
cities, and their 95 percent confidence 
intervals, over the three analysis periods. 
The weights expand the results to the 
universe of cities. 
 
Over the T1-T3 period, urban extent grew 
on average at 5.6 percent per annum with a 
95 percent confidence interval of [5.0%, 
6.1%]. The true average urban extent 
growth rate for all cities is unknown, it is a 
population parameter that we must estimate. 
We are 95 confident that the true average 
growth rate lies between 5.0 percent and 6.1 percent.    The weighted median growth rate 
associated with the T1-T3 period was slightly lower, at 4.2%. A lower median was expected 
based on the skew distribution of urban extent growth rates. A table with descriptive statistics for 
the growth rates at each of the time period can be found in the appendix. 
 
The point estimate for the growth rate over the T1-T2 period is 6.3 percent  [95 percent C.I.: 
5.5%, 7.1%] compared to  5.0 percent for the T2-T3 period [95 percent C.I.: 4.4%, 5.7%]. 
Median values for the two periods were 4.2 percent and 3.1 percent respectively. These 
differences suggest that growth rates are not constant over the entire T1-T3 period and that 
perhaps there has been a slowing down of the rate over time. While the confidence intervals for 
the two time periods overlap, suggesting that average weighted growth rates are not statistically 
different between T1-T2 and T2-T3, it is incorrect to base a judgement about change over time, 
at the city level, by comparing aggregate averages at the two time periods. 
 
Our study is a repeated measures design, meaning that the values across the three time periods do 
not come from independent samples. Since these are paired observations, it is more appropriate 
to focus on the differences in growth rates at the city level between the T1-T2 and T2-T3 time 
periods. We evaluate whether these differences are different than zero, and if so, in what 
direction.  
 
Figure 15 shows the distribution of these differences. For each 
city, the T1-T2 rate was subtracted from the T2-T3 rate. If the 
difference is positive, the T2-T3 rate was greater than the T1-
T2 rate, and if negative, the T2-T3 rate was less than the T1-
T2 growth rate. The differences are fairly symmetric and 
centered a little to the left of zero, with a median of -0.01 and 
an average of -0.012.  
 

Figure 14. The average urban extent growth 
rate, all cities, T1-T2, T2-T3 and T1-T3. 
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We use a weighted t-test on the differences to evaluate whether the average difference is 
statistically different than zero. A weighted t-test on the differences is equivalent to a weighted 
paired t-test for dependent samples.  The result confirms that 
the difference in growth rates between the two time periods 
is different than zero, with a mean difference of -0.012 and a 
95 percent confidence interval of [-2.1%, -0.4%]. We 
interpret this to mean that there has been a deceleration in 
the average growth rate of urban extent from the T1-T2 
period to the T2-T3 period. This average difference was -1.2 
percent in the sample, and we are 95% confident that that the difference lies between -2.1 percent 
and -0.4 percent in the universe of cities.   
 
Population 
 
We repeat the analysis for urban extent on the populations of the 200 city sample.  Figure 16 
shows the weighted distributions of population growth rates. The overall shapes of the 
distributions appear less skew than the urban extent growth rate. If we exclude a very large value 
in T1-T2, corresponding to Hangzhou, China, the range of values along the x-axes is smaller for 
population growth rates than for urban extent growth rates at all three time periods.  
 
Figure 16: The distribution of population growth rates for all cities, T1-T2, T2-T3, and T1-
T3. 

 
 
Average weighted population growth rates 
across the three time periods are shown in 
Figure 17. Over the T1-T3 period the 
average rate was 3.8 percent with a 95 
percent confidence interval of [3.3%, 4.3%] 
and the median rate was 2.9 percent. This 
rate is not constant across the entire period, 
evidenced by different heights of the T1-T2 
and T2-T3 bars. The average rate over the 
T1-T2 period was 4.7 percent with a 95 
percent confidence interval of [3.9%, 5.6%] 
and the average rate over the T2-T3 period 
was 3.0 percent with a 95 percent 

Figure 17. The average population growth 
rate, all cities, T1-T2, T2-T3 and T1-T3. 

Figure 15. The distribution of 
differences in the urban extent 

growth rate, T3T2- T2T1, all cities. 
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confidence interval of [2.6%, 3.4%]. The respective median growth rates were 3.0 percent and 
2.2 percent. The trends suggest a slowing down of the population growth rate over time.  Point 
estimates for average population growth rates across are smaller than urban extent growth rates 
across the three time periods.  
We look at the differences in population growth rates over 
time, at the city level, to determine whether the average 
change over time is different than zero. Figure 18 shows the 
distribution of these differences, where the T1-T2 rate was 
subtracted from the T2-T3 rate. The distribution appears 
centered about zero with a left tail. The average difference 
is -0.017 and the median difference is -0.005.  The weighted 
student’s t-test on the differences confirms that the average is 
statistically different than zero and that that it is negative. The 
95 percent confidence interval for the weighted average 
differences is [-2.5%, -1.0%]. We can interpret this to mean 
that the average population growth rate in the universe of 
cities has slowed down from T1-T2 to T2-T3. This average 
difference was 1.7 percent in the sample and we are 95 
percent confident that the average difference is between -2.5 
percent and -1.0 percent in the universe of cities. 
 
Urban Extent Growth Rate vs. Population Growth Rate 
 
Are cities expanding outwards at faster rates than their populations are increasing? Figure 19 
places the average weighted values for the urban extent growth rate and the population growth 
rate, with their 95 percent confidence intervals, side-by-side. The confidence intervals at T1-T2 
overlap, but the overall pattern suggests higher rates of change for urban extent than population 
across the three analysis periods.   
 
To answer this question, we must 
look at the pairwise differences 
between the urban extent growth rate 
and the population growth rate at the 
city level at a given analysis period. 
A weighted one-sample t-test on the 
paired differences tells us whether 
the differences are different than zero 
and whether they are significantly 
greater or less than zero.   
 
For each city, we consider its urban 
extent growth rate to represent an x 
value and its population growth rate to 
represent a y value. We subtract the y’s 
from the x’s for all cities to obtain the difference in the two growth rates over a given analysis 
period.  

Figure 18. The distribution of 
differences in the population 
growth rate, T3T2- T2T1, all 

cities. 

Figure 19. The average urban extent growth rate vs. 
the average population growth at all periods, all cities. 
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If the difference is positive, the urban extent growth rate is greater than the population growth 
rate. If the difference is negative, the population growth rate is greater than urban extent growth. 
 
Figure 20: The distribution of differences, urban extent growth rate vs. population growth 
rate, all cities. 
 

 
 
Figure 20 shows the weighted distributions 
of these differences. They are fairly 
symmetrical distributions with a modest 
right skew. Over the T1-T2 period, the mean 
difference is 0.016 compared to a median 
difference 0.014; at T2-T3 the mean 
difference is 0.021 compared to a median 
difference of 0.012 and over the T1-T3 
period the mean difference is 0.018 
compared to a median difference of 0.017. 
One-sample weighted t-tests on the 
differences at each time period, testing the 
null hypothesis that the differences are 
equal to zero, confirm that urban extent 
and population growth rates are different 
from zero at each time period, and more 
specifically, that the urban extent growth rate is greater than the population growth rate. Figure 
21 shows the mean differences across the three time periods and their 95 percent confidence 
intervals. The data suggest that urban extent growth rates are greater than the population growth 
rates at all time periods and we know that both average urban extent and population growth rates 
have slowed down over time. Curiously, the overlapping confidence intervals for the difference 
between the urban extent rate and the population rate suggest that the degree to which the urban 
extent rate growth rate is different than the population growth rate is not statistically different 
over time.  

Figure 21. Average difference of the urban extent 
growth rate vs. the population growth rate in all cities 
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Less Developed Country Cities 
 
Urban Extent 
We focus now on cities in less developed countries. These cities are a subset of the 200-city 
sample. The weights expand the data so that the sub-sample is representative of all cities in less 
developed countries. In Figure 22, we see the weighted distributions of urban extent growth rates 
associated with the three time periods. The shapes of the distributions are very similar to the 
weighted distributions for all sample cities. Less developed country cities comprise 66 percent of 
the universe of cities. The greater range of x-axis values in T1-T2 indicates higher growth rates 
observed over this period compared to T2-T3.    
 
Figure 22: The distribution of urban extent growth rates in less developed cities, T1-T2, 
T2-T3, and T1-T3. 

 
 
 
Figure 23 shows the average weighted urban 
extent growth rates, and their 95 percent 
confidence intervals for cities in less 
developed countries. Over the T1-T3 period, 
urban extent grew on average at 6.7 percent 
per annum with a 95 percent confidence 
interval of [6.1%, 7.3%]. If we were to take 
repeated samples of similar size for cities in 
less developed countries, we would expect 
the average growth rate to fall between 6.1 
percent and 7.3 percent 95 times out of 100. 
The weighted median growth rate associated 
with the T1-T3 period was 6.0 percent. 
The point estimate for the average T1-T2 
growth rate is 7.4 percent [95 percent CI: 
6.1%, 8.7%] compared to 6.2 percent [95 
percent CI: 5.1%, 7.3%] for the T2-T3 period. The respective median values for these time 
periods are 5.5 percent and 5.7 percent. These estimates of average urban extent growth rates are 
higher, by about 1.1 percentage points, than estimates based on all sample cities. The difference 
in average growth rates between T1-T2 and T2-T3 suggests a slowing down of the growth rate 

Figure 23. The average urban extent growth 
rate, less developed cities, T1-T2, T2-T3 and 

T1-T3. 
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over time. While the confidence intervals overlap, the repeated measures design calls for 
evaluating the differences in growth rates at the city level to determine whether the differences 
over time are significantly different than zero.  

The distribution of the differences, where the T1-T2 growth 
rate for a given city was subtracted from the T2-T3 growth 
rate for the same city, can be seen in Figure 24. The values are 
centered about zero with a moderate left skew. The median 
difference is -0.010 and the mean difference is -0.012. 
Curiously, these are the same median and mean values 
associated with the analysis for all cities. A weighted t-test on 
the differences confirms that the difference in growth rates 
between the two time periods is different than zero at the 95 
percent confidence level and, more specifically, that the 
average difference is lower than zero. The mean average 
difference has a value of -0.012 with a 95 percent 
confidence interval of [-0.0228, -0.0012]. We interpret this 
to mean that the urban extent growth rate has slowed down 
in less developed country cities from T1-T2 to T2-T3, and 
that we are 95 percent confident that this difference is 
between -2.3 percent and -0.01 percent in less developed country cities. 
 
Population 
 
Figure 25 shows the weighted distribution of population growth rates in les developed country 
cities. As with urban extent, the distribution of population growth rates closely mirrors the 
distribution of the overall sample. Population growth rates appear more tightly clustered than 
urban extent growth rates. 
 
Figure 25: The distribution of population growth rates in less developed cities, T1-T2, T2-
T3, and T1-T3. 
 

 
 
Average weighted population growth rates across the three time periods are shown in Figure 26. 
Over the T1-T3 period the average growth rate was 4.7 percent per annum with a 95 percent 
confidence interval of [4.1%, 5.3%]. The median rate over this period was 3.9 percent. The 
average rate was not constant over the entire period. The average rate for T1-T2 period was 5.8 

Figure 24. The distribution of 
differences in the urban extent 
growth rate, T3T2- T2T1, less 

developed cities. 
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percent with a 95 percent confidence interval of [4.6%, 7.1%] and the average rate over the T2-
T3 period was 3.8 percent with a 95 percent confidence interval of [3.1%, 4.4%]. The respective 
median growth rates for these two periods are 4.0 percent and 3.6 percent. Average population 
growth rates are smaller than urban extent growth rates at all the three periods. The trends 
suggest a slowing down of the population growth rate over time. An evaluation of the pairwise 
differences in population growth rates at the city level is needed to confirm whether the decrease 
in the population growth rate is statistically significant.  
 
Figure 26: The average population growth rate, less developed cities, T1-T2, T2-T3, and 
T1-T3.  
 
 
 
 
 
 
 
 
 
 
 
The distribution of differences in population growth rates in less developed country cities is 
shown in Figure 27. The T1-T2 rate was 
subtracted from the T2-T3 rate. Values less than 
zero indicate a lower growth rate in later time 
period. The distribution appears centered about 
zero with a left tail. The average difference has 
a value of -0.021 and the median difference 
is -0.008. The weighted t-test on the differences 
confirms that the average is statistically 
different than zero and that it is negative. The 95 
percent confidence interval for the weighted 
average difference is [-3.1%, -1.0%]. We can interpret 
this to mean that that population growth rates have 
slowed down from T1-T2 to T2-T3, by 2.1 percent on 
average in the sample and between -3.1 percent 
and -1.0 percent in all less developed country cities.    
 
Urban Extent Growth Rate vs. Population Growth Rate 
 
When we look at the entire sample, we know that cities’ urban extents are increaing at faster 
rates than their populations. We might expect a similar result, and perhaps a more pronounced 
difference in less developed country cities considering the trends between these two groups. 
 
Figure 28 shows the average weighted urban extent and population growth rates, with their 95 
percent confidence intervals, side-by-side. The relationship between urban extent and population 

Figure 27. The distribution of 
differences in the urban 

population growth rate, T3T2- 
T2T1, less developed cities. 
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at each time period and across time periods mirrors the relationship observed in the entire 
sample, with the notable exception that the values for less developed country cities are greater.  
 
Figure 28: The average urban extent growth rate vs. the average population growth at all 
periods, less developed cities. 

 
 
 
 
 
 
 
 
 
 
 
 

 
We examine the pairwise differences between the urban extent growth rate and the population 
growth rate at the city level at a given time period. We subtract the population growth rate from 
the urban extent growth rate to determine whether the average difference is different than zero. If 
the difference is positive, the urban extent growth rate is greater than the population growth rate. 
If the difference is negative, the population growth rate is greater than urban extent growth. The 
distributions of these differences are shown below in Figure 29.  
 
Figure 29: The distribution of differences, urban extent growth rate vs. population growth 
rate, less developed cities. 
 

 
 
All three distributions are fairly symmetrical centered to the right of zero. Over the T1-T2 period 
the mean difference is 0.016 compared to a median difference of 0.015; at T2-T3 the mean 
difference is 0.024 compared to a median difference of 0.015; and over the T1-T3 period the 
mean difference is 0.020 compared to a median difference of 0.019. One-sample weighted t-tests 
on the differences, testing the null hypothesis that the differences are equal to zero, confirm that 
the two rates are different from each other at each time period and that the urban extent growth 
rate is greater than the population growth rate at the 95 percent confidence level. Figure 30 
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shows the mean differences across the three time periods and their 95 percent confidence 
intervals. The overlapping confidence intervals for the difference between the urban extent rate 
and population rate suggest that the degree to which the urban extent rate growth rate is different 
than the population growth rate is not statistically different over time. 
 
Figure 30: Average difference of the urban extent growth rate vs. the population growth 
rate in less developed cities. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
More Developed Country Cities 
 
Urban Extent 
 
We now focus on the subset of sample cities in more developed countries. These cities comprise 
26 percent of the sample and 33 percent of the universe of cities. Figure 31 shows the weighted 
distribution of the urban extent growth rates for these cities across the three analysis periods. The 
ranges of x-axis values correspond approximately the lower third of the x-axis ranges for cities in 
less developed countries; in other words, the observed rates of urban extent change are much 
smaller in more developed country cities. Over the T1-T2 period most rates are clustered below 5 
percent while over the T2-T3 period most rates are clustered below 2 percent. The right skew of 
the distributions at all time periods is similar to the pattern observed in less developed countries 
cities.   
 
Figure 31: The distribution of urban extent growth rates in more developed cities, T1-T2, 
T2-T3, and T1-T3. 
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Figure 32 shows the average weighted urban extent growth rates and their 95 percent confidence 
intervals for cities in more developed countries. Over the T1-T3 period, urban extent grew on 
average at 2.4 percent per annum with a 95 percent confidence interval of [2.0%, 2.8%]. The 
weighted median growth rate was 2.2 percent. 
 
The point estimate for T1-T2 growth rate is 
3.1 percent [95 percent CI:  2.6%, 3.7%] 
compared to 1.8 percent [95 percent CI: 
1.5%, 2.1%] for the T2-T3 period. The 
respective median values are 2.5 percent and 
1.1 percent. The average and median urban 
extent growth rates are all lower than the rates 
observed in less developed country cities 
across all three periods.  
 
As before, we evaluate the city-level 
differences in growth rates between the two 
analysis periods to determine whether the 
average difference is different than zero. We subtract the 
T1-T2 rate from the T2-T3 rate. If the difference is greater 
than zero, the T2-T3 rate is greater than the T1-T2 rate, if 
the difference is less than zero, the T1-T2 rate is greater 
than the T2-T3 rate.  Figure 33 shows the distribution of 
these differences. The distribution is centered a little to the 
left of zero. The average difference is -0.013 and the 
median difference is -0.010. A weighted t-test on the 
differences confirms that the average difference is 
statistically different than zero and that it is negative. The 
95 percent confidence interval for the average difference is 
[-2.16%, -0.05%]. We interpret this to mean that the 
average urban extent growth rate has slowed down over 
time and that we are 95 percent confident that the 
difference in the rate is between -2.16 percent and -0.05 
percent for more developed country cities.   
 

Figure 32. The average urban extent growth 
rate, more developed cities, T1-T2, T2-T3 and 

T1-T3. 

Figure 33. The distribution of 
differences in the urban extent 
growth rate, T3T2- T2T1, more 

developed cities. 
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Population 
 
Figure 34 shows the weighted distributions of population growth rates in more developed 
country cities. While we can observe rates of 5 percent per year or higher at each time period, the 
majority of values are clustered around zero. It appears approximately 22 percent of cities lost 
population between T1-T3, which can be deduced by the heights of the bars associated with 
negative values along the x-axis. 
 
 
 
Figure 34: The distribution of population growth rates in more developed cities, T1-T2, T2-
T3, and T1-T3. 
 

 
 
The average weighted population growth 
rates across the three time periods are shown 
in Figure 35. Over the T1-T3 period the 
average rate was 1.1 percent per annum with 
a 95 percent confidence interval of [0.6%, 
1.5%]. The median rate was higher, at 1.3 
percent. The average rate was not constant 
over the entire period. The average growth 
over the T1-T2 period was 1.6 percent with a 
95 percent confidence interval of [1.2%, 
2.0%], and the average rate over the T2-T3 
period was 0.7 percent, with a 95 percent 
confidence interval of [ 0.5%, 1.0%]. The 
respective median rates were 1.3 percent and 
0.7 percent. The trends suggest a slowing of 
the average population growth rate over time. We 
evaluate the city-level differences in growth rates 
between T1-T2 and T2-T3 to determine whether the 
average difference is different than zero and in what 
direction.  
 

Figure 35. The average population growth 
rate, more developed cities, T1-T2, T2-T3 and 

T1-T3. 
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The distribution of these differences, where the T1-T2 growth rate was subtracted from the T2-
T3 rate is shown in Figure 36. They appear centered around zero. The mean difference is -0.009 
and the median difference is -0.002. The weighted t-test on the differences confirms that the 
average difference is statistically different than zero and that it is negative. The 95 percent 
confidence interval for the weighted average difference is [-1.5%, -0.25%]  
 
 
 
 
Urban Extent Growth Rate vs. Population Growth Rate 
 
We have seen that the urban extent 
growth rate is greater than the 
population growth rate in the 
analyses for all cities and for cities 
in less developed countries. We 
now test whether the same is true 
for cities in more developed 
countries. Figure 37, shows the 
average weighted urban extent and 
population growth rates for more 
developed country cities side-by-
side with their confidence intervals. 
The side-by-sde relationship 
between the average urban extent 
growth rate and population growth 
rates observed in all cities and less developed country cities holds true in more developed 
country as well, with the exception that rates in more developed countries are much smaller.  
 
We examine the pairwise differences between the urban extent growth rate and the population 
growth rate at the city level at a given time period. We subtract the population growth rate from 
the urban extent growth rate to determine whether the average difference is different than zero. If 
the difference is positive, the urban extent growt rate is greater than the population growth rate. 
If the difference is negative, the population growth rate is greater than the ruban extent growth 
rate. The distributions of these differeces are shown in Figure 38. 
 
Figure 38: The distribution of differences, urban extent growth vs. population growth rate, 
more developed cities. 
 

Figure 36. The distribution of 
differences in the population 

growth rate, T3T2- T2T1, more 
developed cities. 

Figure 37. The average urban extent growth rate vs. the 
average population growth at all periods, more 

developed cities. 
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At all three time periods, the differences 
appear centered to the right of zero. Over the 
T1-T2 period the mean difference is 0.015 
compared to a median difference 0.013; at T2-
T3 the mean difference is 0.011 compared to a 
median difference of 0.007; and over the T1-
T3 period the mean difference is 0.013 
compared to a median difference of 0.008. 
One sample weighted t-tests on the 
differences, testing the null hypothesis that the 
differences are equal to zero confirm that the 
two rates are different from each other at each 
time period and that the urban extent growth 
rate is greater than the population growth rate 
at the 95 percent confidence level. Figure 39 
shows the mean differences across the three 
time periods and their 95 percent confidence 
intervals. We observe the same pattern that 
we saw in less developed country cities. Although average urban extent and population growth 
rates have slowed over time, the average difference between the two rates does not appear to be 
statistically different over time. 
 
Multiples 
 
Unlike growth rates based on exponential growth models, which may be difficult to use to 
understand by how much a quantity grows over time, the concept of the multiple has a much 
more intuitive interpretation. When we use a multiple to describe the relationship between two 
quantities, it is the amount the reference quantity is multiplied by to obtain the target quantity. If 
a quantity grows from a value of 100 to value of 250, its multiple is 2.5. More concretely, the 
starting value doubled and a half. The multiple is similar to but not the same as total percent 
change. In this example, the total percent change is 150 percent. Converting the multiple to total 
percentage change is simply the multiple minus 1 times 100 percent. The same rules apply when 
the reference quantity loses value. If a quantity decreases from 300 to 180, its multiple is 0.6. 
More concretely, the target value is only 0.6 times the original quantity. To convert this multiple 

Figure 39. Average difference of the urban extent 
growth rate vs. the population growth rate in more 

developed cities 
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to total percent change, we take the multiple minus 1 and multiply by 100 percent to obtain a 
percent change of minus 40 percent.  
 
When we use exponential growth rates, the rate is normalized with respect to the time between 
observations. If T1 and T2 in one city refer to observations in 1989 and 2000 and T1 and T2 in 
another city refer to observations in 1988 and 2001, it does not necessarily matter that the total 
time between observations is different in the two cities. That is because the rate in each city is 
annualized, and hence we refer to the average annual growth rate. The more similar the actual 
dates across observations are the better, but we can still reasonably compare annualized rates 
when the time periods are approximately equal. The situation is different when we use multiples. 
The multiple is not normalized with respect to time and different lengths of time between 
observations will result in multiples that are not directly comparable. We address this mismatch 
by projecting urban extent and population for all cities to three fixed time points: 1 July 1990, 1 
July 2000, and 1 July 2014, corresponding to the midpoints of these years. These are the median 
years associated with all T1, T2, and T3 observations, respectively. The multiples we report are 
based off of these reference dates.  
 
All Cities 
 
Multiples were calculated for each city for urban extent and population for the 1990 – 2000 
period and the 1990 – 2014 period. The distributions of the multiples, for both urban extent and 
population, are strongly right skew.  The weighted distributions of urban extent multiples and 
population multiples are shown in Figures 40 and 41. The maximum urban extent multiple for 
the 1990 – 2000 period was 29.8, observed in Suva, Fiji, compared to an average multiple of 2.4 
and a median multiple of 1.5.  For the 1990 – 2014 period the maximum urban extent multiple 
was 97.3, observed in Xucheng, China, compared to an average multiple of 7.5 and a median 
multiple of 2.9. The extreme multiples at each time period pull the average to the right of the 
median and as a result the average multiple requires a careful interpretation. While the 
calculation of the average is correct, the median multiple will be a better descriptor of a typical 
city. For the 1990 – 2014 period, the five highest urban extent multiples, rounded to the nearest 
whole number were: 97 (Xucheng, China), 81 (Rajshahi, India); 52 (Kozhikode, India); 50 (Vinh 
Long, Vietnam) and 46 (Hangzhou, China). It is difficult to fathom urban extent multiples above 
fifty, yet maps and data tables from the Atlas of Urban Expansion – 2016 Edition, available for 
download from htpp://www.atlasofurbanexpansion.org, provide confirmation. Atlas map pages 
for Suva and Xucheng are included in the appendix. 
 
Figure 40: The distributions of urban extent multiples in all cities, 1990-2000, and 2000-
2014.  
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The maximum population multiple for the 1990 – 2000 period was 62.5, in Hangzhou, China, 
compared to an average multiple of 2.2 and a median multiple of 1.3. If we remove Hangzhou 
from the analysis, out of an abundance of caution for measurement error, the highest multiple is 
13.1, in Palmas, Brazil. For the 1990 – 2014 period the maximum population multiple was 187.3, 
also observed in Hangzhou, China, compared to an average multiple of 4.0 and a median 
multiple of 1.9. If we remove Hangzhou out of caution, the highest multiple is 23.5, also in 
Palmas, Brazil. The x-axis in the 1990 – 2014 histogram in Figure 41 has been censored at 30 to 
exclude Hangzhou. For the 1990 – 2014 period, the five highest population multiples rounded to 
the nearest whole number, excluding Hangzhou, were: 23 (Palmas, Brazil); 23 (Rajshahi, India); 
18 (Singrauli, India); 17 (Xucheng, China); and 17 (Rawang, Malaysia). 
 
Figure 41: The distributions of population multiples in all cities 1990-2000, and 2000-2014. 
 

 
 
Figure 42 shows the weighted average median urban extent and population multiples for all 
sample cities, with the 95 percent confidence interval for the average. Average values are 
displayed in solid bars while median values are the wider hollow bars. Population data for 
Hangzhou has been removed out of an abundance of caution. The 1990 multiples have values of 
one as 1990 is the reference year on which the 2000 and 2014 multiple are based. A table of 
descriptive statistics for the multiples can be found in the appendix.  
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Figure 42: The average (solid) and median (hollow) values for the 1990 urban extent and 
population multiplier, all cities. 

 
 

Less Developed Country Cities 
 
The analysis of growth rates showed that trends in less developed country cities are more 
pronounced versions of the trends in all cities. This carries over to the analysis of multiples. As 
the distributions of urban extent and population multiples in less developed country cities mirror 
the those observed in the sample as a whole we do not show them.  
 
Over the 1990 – 2000 period the maximum urban extent multiple was 29.8, in Suva, Fiji, 
compared to an average multiple of 2.7 and a median multiple of 1.7. Over the 1990 – 2014 
period the maximum urban extent multiple was 97.3, in Xucheng, China, compared to an average 
multiple of 9.5 and a median multiple of 4.2.  The top five urban extent multiples listed in the 
preceding section for all cities are  located in less developed countries. We do not repeat them. 
 
Over the 1990 – 2000 period the maximum population multiple was 62.5, in Hangzhou China, 
compared to an average multiple of 2.5 and a median multiple of 1.5. If we remove Hangzhou 
out of caution, the highest multiple is 13.1 in Palmas, Brazil. Remoivng Hangzhou again, the 
maximum multiple over the 1990 – 2014 period the maximum population multiple was 23.5, in 
Palmas, Brazil, compared to an average multiple of 4.9 and a median multiple of 2.6. Figure 43  
shows the weighted average and median urban extent and population multiples for cities in less 
developed countries, with the 95 percent confidence intervals for the average. Population data for 
Hangzhou was not included in the creation of the graphic.  
 
Figure 43: The average (solid) and median (hollow) values for the 1990 urban extent and 
population multiplier, less developed cities. 
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More Developed Country Cities  
 
The distribtions of multiples in more developed countries are more tighly clustered and have 
relatively small values. The maximum urban extent multiple for the 1990 – 2000 period was 3.3, 
observed in Springfield, MA in the United States, compared to an average value of 1.4 and a 
median value of 1.3. For the 1990 – 2014 period, the maximum urban extent multiple was 6.6 
observed in Raleigh-Durham, NC in the United States, compared to an average value of 1.9 and 
a median value of 1.7. The average and median multiples are close together, making the aveage a 
good descriptor of a typical city. 
 
The maximum population mutiple for the 1990 – 2000 period was 2.7, observed in Raleigh-
Durham, compared to an average value of 1.2 and a median value of 1.1. For the 1990 – 2014 
period, the maximum multiple was 4.9, also observed in Raleigh-Durham, compared to an 
average value of 1.4 and a median value of 1.4. The strong similarity of the aveage and median 
multiples in more developed county cities stands in contrast to large distance between them in 
less developed country cities.  The more developed average and median multpliers are shown in 
Figure 44.   
 
Figure 44: The average (solid) and median (hollow) values for the 1990 urban extent and 
population multiplier, more developed cities.  
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Summary 
 
This section presented evidence on the change in urban extent and population in the 200 city 
sample as a whole, in a subset of less developed country cities and in a subset of more developed 
country cities. Each city in the sample represents cities in its sampling sub-stratum, or its 
sampling box. The results we have discussed for all cities, less developed country cities, and 
more developed country cities are weighted results that adjust the findings of an individual 
sample city to account for the number of cities it represents.   
From the T1-T2 to the T2-T3 period, we found that both the average urban extent growth rate 
and the average population growth rate declined in all three categories. These declines were 
statistically significant. There is considerable variation in the magnitude of growth rates across 
the categories. For the T2-T3 period, for example, the average and median urban extent growth 
rates in less developed country cities were 6.2 and 5.7 percent per year compared to rates of 1.8 
and 1.1 percent per year in more developed country cities. The average and median population 
growth rates over this period were 3.8 and 3.6 percent per year in less developed country cities 
compared to 0.7 and 0.7 percent per year in more developed country cities. Are cities’ urban 
extents growing at faster rates than their populations? Our statistical tests suggest that on average 
the answer is yes and that this was true for every analysis period in our study, in both less and 
more developed country cities, even though urban extent and population growth rates have 
declined.  
 
The multiple was introduced as a more intuitive way to understand and communicate change 
over time compared to the average annual growth rate. Average and median multiples for the 
1990 – 2000 and 1990 – 2014 periods may not be consistent with average and median growth 
rates over the T1-T2 and T1-T3 periods owing to the manner in which the multiple was 
constructed. We believe the median multiple is a more reliable measure and more directly 
comparable to the median growth rate. For example, the median urban extent multiple for all 
cities for 1990 - 2014 was 2.9; namely the typical city increased its area almost three-fold over 
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the 24-year period. The median urban extent growth rate for all cities over the T1-T3 period was 
4.2 percent per year. A quantity that grows 4.2 percent per year increases by a factor of 2.8 over 
24 years. Similarly, the median 1990 – 2014 urban extent multiple for less developed country 
cities was 4.2; namely, the typical city in this category slightly more than quadrupled in size over 
the 24-year period. The median urban extent growth rate for these cities was 6.0 percent per year. 
A quantity that grows at that rate increases by a factor of 4.3 over 24 years.    
 

Modeling Urban Extent and Expansion 
 

The previous sections have addressed how spatial and population data for urban extent was 
collected, how we measured and defined it, how it is distributed in the 200-city sample, and how 
it has changed over time, based on 600 observations spanning a 24-year period. A quantitative 
understanding of the amount of land cities occupy, and its change over time, is essential for the 
promotion of evidence-based policies for planning and managing urban growth. When cities 
grow and expand, new urban lands must be properly serviced—with trunk urban roads that carry 
urban transport, with sewer and water systems, with public open spaces, for example—to be of 
optimum use to their inhabitants. Cities that can secure adequate lands and properly service them 
in advance of development are likely to become more productive, efficient, and sustainable than 
those that do not. It will be challenging to make adequate, forward-looking plans if there is no 
information for how fast cities are expanding, how fast they have expanded, or if there is no 
understanding of what the dominant trends are.  As data collection methods and data processing 
capabilities improve, larger and more carefully constructed samples will refine our understanding 
of urban expansion in cities of different sizes, in different income categories, in different regions.  
 
Measuring and reporting on urban extent and expansion should be repeated over time to update 
and improve the existing knowledge base. Planners and policy makers would be able to better 
plan and prepare for urban expansion, however, if there was accurate and contemporary 
information on the different forces that drive it. In this section we transition from an analysis that 
is primarily descriptive to one that is inferential. Whereas we have focused on describing the size 
of cities’ urban extents and the rate at which they change over time, we now shift our attention to 
the factors that explain the changes we observe in the 200-city sample and the relative 
contributions of these factors to urban extent and expansion.  
 
There are a multitude of analyses that have looked at urban land cover and urban expansion at 
different geographic scales.  A 2010 meta-analysis identified no fewer than 326 case studies that 
used remotely sensed data to map urban land conversion at the metropolitan or regional scale, 
and that number has surely risen since then (Seto et al. 2010). Despite the large number of 
studies, the use of inferential statistics to understand how different independent variables can 
explain observed urban land cover and urban expansion, and how these relationships might be 
generalized to larger groups of cities, is seldom found in the academic literature (Burchfield et al. 
2006; Angel et al. 2005; Seto et al. 2010; Angel et al. 2011). There are relatively few studies that 
employ regression analysis, for example, to quantify how the dependent variables of urban land 
cover and urban expansion, measured at the city level, relate to explanatory variables pertaining 
to the demand for land by households and firms, geographic constraints and environmental 
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conditions, or policies and programs that affect travel behavior and the regulation of land and 
housing. 
 
The reasons why this type of analysis is lacking may be due to diverse data issues, both on the on 
the side of the dependent variable and on the side of the independent variables, as well as a 
general tendency of researchers involved in the remote sensing of land to come from fields 
outside of urban planning, or the social sciences more broadly, though this is changing 
(Donaldson and Storeygard 2016).   
 
On the dependent variable side, there are problems of sample size. While there may be many 
individual studies that map and measure change in urban land, these studies typically focus on 
one city only, one metropolitan region, or a small group of cities over a well-defined region. 
Combining information from various studies to obtain a larger sample size can lead to 
mismatches in the way cities are defined, in the spatial resolution of the underlying imagery, in 
the techniques used for land cover classification, and in the analysis dates. Simply put, data from 
different studies may not be directly comparable. Even when comparable data is assembled for a 
group of cities, there are questions about the generalizability of the dataset. Cities are not 
homogenous units; some are large and some are small, some are rich and some are poor, some 
are surrounded by water and mountains while others are surrounded by flat buildable land. A 
consequence of this heterogeneity is this is not all random city samples are equal. If the rationale 
of a sample-based study is to draw generalizations about the population from which it was 
drawn, samples must be reasonably representative of the populations they represent and they 
must be reasonably large. Sample based studies do exist in the literature but they are rare and 
sample sizes are relatively small (Schneider and Woodcock 2008; Angel et al. 2012; Taubenbock 
et al. 2012). Sample based studies should become more frequent in the future as new global land 
cover products become available, the time and effort required for data processing decreases, and 
the use geographic information system software in the urban sciences increases. 
 
On the independent variable side, data availability and the spatial resolution at which data is 
collected are impediments to the development of models for large heterogenous samples based 
on cities in different countries. While there is plentiful social and economic data available at the 
global level from resources like the World Bank’s World Development Indicators (WDI), these 
databases contain information reported at the national level. National level data is sometimes 
meaningful for inclusion in models that are fundamentally about cities, but more often than not it 
leads to analyses that become less about cities and their unique characteristics and more about 
the characteristics of countries to which they belong. There is no analogue to WDI for the 
world’s cities. Our sample contains 34 observations in China, 17 in India and 14 in the United 
States. In each of these countries the cities in question have different populations, different 
economic profiles, different geographies, and different rules and regulations that may be 
determined at the local level. Ideally, independent variables in a study about cities would be 
collected at the same spatial level as the dependent variable. This is extremely challenging, 
especially when the sample is global in its composition. It may be possible to devote the time and 
resources to collect detailed city level data for a small group of cities, but this leads to a tradeoff 
in sample size and the generalizability of the findings. In our case, this would be further 
complicated by the fact that urban extent boundaries do not conform to statistical reporting units 
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and some degree of spatial mismatch between the urban extent and the reported value would be 
practically unavoidable.    
 
The situation is less challenging in countries or regions with robust data programs, or more 
generally, in places with a strong tradition of data collection and reporting. Detailed 
socioeconomic data may be publicly available at fine geographic resolutions in the United States 
and in many OECD countries but this is the exception rather than the rule. Perhaps data at fine 
geographic resolutions exists in other countries but it is not publicly shared, or it not shared with 
individuals outside the country. We experienced this during the collection of spatially referenced 
population data in certain countries. The situation is also less challenging when the variable in 
question involves information that can be remotely sensed or monitored as opposed to 
information that requires local informants or in situ data collection. Currently, remote sensing 
methods are typically used to collect information about geographic conditions and land uses, 
including elevation data and information about land cover categories, such as areas in 
cultivation. Perhaps in the future new data collection methods based on crowd sourcing, or big 
data approaches applied to mobile phone and internet data, will facilitate what information we 
can collect at the city level. Until that time, obtaining globally representative data at the city 
level, on regulations, programs, and local conditions related to the economy, land use, housing, 
and transport – variables which there is reason to believe might be important for explaining 
urban extent and expansion – remains a serious challenge.  
 
Theories and Hypotheses 
 
There are many potential factors that could explain the amount of area cities occupy and its 
change over time. These include economic factors such as household income, the costs of 
transport and housing, and the marginal productivity of land in different uses; geographic factors, 
such as steep slopes and water that limit outward growth or climactic conditions that make 
construction easier; social and cultural factors, that may lead people to live further away from 
each other or that explain different preferences and attitudes for housing and lifestyle; or political 
and institutional factors, that result in policies, regulations, and enforcement of those policies and 
regulations, that affect land, housing, and transport. Surely other potential factors may exist. 
Nothing has been said of population as a factor, though it is probably the most intuitive of all; as 
cities grow in population they upwards and outwards.  
 
Developing theories about the factors that explain urban extent and its change over time is 
important, but to move these theories from intellectual exercises to testable hypotheses is also 
important, especially in the context of evidence-based policy for managing urban growth. This is 
a point at which international research on cities must confront data limitations that effectively 
constraint what the breadth and depth of testable hypotheses can be. 
 
As they relate to planning for and managing urban growth, the hypotheses can be divided into 
two broad categories. First, how is amount of area occupied by cities influenced by factors 
generally assumed to be outside the realm of policy intervention? What is the relative influence 
of these factors in the sample of cities? This includes things like population growth and 
geography. Second, how do variables that may be influenced by public policy influence urban 
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extent and expansion and what is the relative influence of these factors on observed otucomes? 
This includes things like the cost of transport and regulations on land and housing. 
 
The point of departure for our hypotheses is the standard economic model of urban spatial 
structure, developed by Alonso (1964), Mills (1967), and Muth (1969) later refined by Wheaton 
(1976) and restated by Brueckner (1987). The model and its extensions yield a number of 
testable hypotheses on which our analysis is based. These include: 
 

1. Other things being equal, the larger the population of a city, the larger its urban extent 
and the larger the increase the larger its expansion; 

2. Other things being equal, the higher the average income in a city, the larger its urban 
extent, and the larger the increase the larger its expansion; 

3. Other things being equal; the higher the share of buildable land available for housing and 
development, the larger its urban extent and expansion; 

4. Other things being equal, the higher the price of agricultural land on the urban periphery, 
the smaller the urban extent 

5. Other things being equal, the higher the cost of commuting in the smaller its urban extent,  
6. Other things being equal, an increase in the world price of the export good will increase 

urban extent and expansion 
 
We have tested these relationships in the 200-city sample using data that is described in the 
following section. To the above hypotheses we also added a seventh, related to regulatory red 
tape, or the overall stringency of the rules and regulations governing land and housing in cities, 
Other things being equal, the more stringent the rules and regulations governing land and 
housing, the smaller the urban extent. The city-based focus in the collection of explanatory 
variables for these models makes them the second generation of models of urban extent and 
expansion described in Angel et al. (2005). 
 
Data for Model 
 
Average Income 
 
Time-series data for average income is readily available at the country level, reported as GDP 
per capita, but city-level measures of average income are much less common, especially in non-
OECD countries. In the United States, the Bureau of Economic Analysis provides GDP per 
capita estimates for 382 metropolitan statistical areas. The OECD’s statistical database provides 
GDP per capita measures for 281 metropolitan areas with populations over 500,000 in 29 OECD 
countries. Collecting GDP per capita data at the city level for all 200 cities presented numerous 
challenges as the sample contains 63 cities with populations under 500,000 and two-thirds of 
sample cities are in non-OECD countries. Moreover, the urban extent boundaries we developed 
do not conform to statistical reporting units. Even for sample cities with entries on the United 
States and OECD databases, we would not obtain a one-to-one spatial match between the 
boundary of the reported value and the boundary of the urban extent.    
 
Since the average income - urban extent relationship that we want to test is spatially explicit, we 
sought city-level measure of GDP per capita for all 200 sample-cities as opposed to country level 
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measures. We could obtain city-level estimates of GDP per capita (PPP) for all but two sample 
cities from the McKinsey Global Institute’s CityScope database, a proprietary product. The 
database contains income information for 2,910 cities and metropolitan areas with populations of 
at least 150,000 in 2012. The two sample cities absent from the database were Gaoyou, Jiangsu 
Province, China, and Dzherzhinsk, Russia. Using the data for all cities within each of these 
countries, we developed models to estimate GDP per capita for these two missing cities. While 
the McKinsey average income estimates are city-based they are not explicitly spatial at least not 
in the database; we never knew exactly over which areas the estimates corresponded.  We could 
gauge the agreement between their definition of a city and our own by comparing our urban 
extent populations to their reported city populations. Differences were small enough to warrant 
the assignment of GDP per capita estimates to the sample cities. For countries with multiple 
cities in the sample, such as China (34), India (17), the United States (14), Brazil (8), Russia (6), 
and many others, we have heterogenous estimates of average income for each city observation 
within the country; in China for example, the difference between the minimum and maximum 
value varies by a factor of 10.  
  
Buildable Land 
 
When the slope of land rises above a certain threshold it becomes unbuildable, or at the least, 
more difficult to build upon. The buildability threshold may vary by location according to the 
composition of the terrain, climactic conditions, building materials, accepted norms, or laws. To 
measure buildable land as it relates to models of urban extent and urban expansion, we focus on 
a city’s expansion area. Built-up area within the urban extent or outside the urban extent, 
regardless of the slope of the underling terrain is buildable land – the built area already exists. 
We define the expansion area, or the analysis area, as the area surrounding the city that contains 
exactly three times the area of the urban extent. This analysis area is typically open space, but it 
may contain built-up areas or water bodies. Expansion areas for the buildable land analysis were 
automated using a Python script. Regardless of the shape of the urban extent of the number of 
polygons that comprise it, the script produces an analysis area that contains three times the urban 
extent within one percent error range. In Figure 45, below, we see the urban extents and 
expansion areas for the buildable land calculations in Ahmeadbad, India and Mexico City, 
Mexico.  
 
Figure 45: The expansion areas of Ahmedabad, India (left) and Mexico City, Mexico 
(right). 
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We apply a slope threshold of 15 percent rise, or 8.53 degrees, to calculate the share of buildable 
land within the analysis area. This threshold was chosen after conversations with builders and 
real estate professionals in the United States where slope values greater than a 15 percent rise are 
associated with increased development costs. It is possible to build on steeper slopes, of say 20 
percent or even 50 fifty percent, but these raise development costs substantially and often require 
complex engineering solutions.    
 
Buildable land was calculated by combining information from two datasets:  NASA’s Shuttle 
Radar Topography Mission (SRTM) dataset, which contains a digitial elevation model (DEM) 
and a water file, and the European Commission’s Global Human Settlements (GHS) built-up 
grid. The GHS dataset contains built-up area information for the entire planet at 38m spatial 
resolution for the year 2014. SRTM data is 30m resolution and contains elevation data for the 
entire planet based on information collected in the year 2000. SRTM pixels were resampled to 
match the GHS resolution. The three pixel categories were mosaiced in such a manner that GHS 
pixels lay on top of water pixels, which lay on top of elevation pixels. Slope was calculated on 
this bottom layer of non-GHS, non-water pixels, using the ArcPy Python package. The buildable 
land ratio for a city is the area within its buffer with slope less than 15 percent divided by the 
total area of the buffer. In Figure 46, below, we can see two extreme examples of the buildable 
land ratio. Hong Kong, on the left, is surrounded by steep hillsides and water and has very little 
buildable land (7.1%) while Oyo, Nigeria on the right, is surrounded by flat open land, resulting 



  

Page 44 
 

in plentiful buildable land (96.3%). Green areas correspond to land with slope less than 15 
percent and yellow areas to slope greater than 15 percent.   
 
Figure 46: Buildable land in the expansion areas of Hong Kong (left) and Oyo (right).  
 
 
Airport Score 
 
Airport names and locations and information for the airline connections between airports were 
used to create an origin-destination matrix for the world’s airports. The dataset used to create this 
matrix pertains to airport network linkages in June 2014 and was purchased from the website 

www.openflights.org.The dataset lists 3,316 airports in 214 countries and contains over 65,000 
unique origin-destination pairs. An origin-destination pair occurs at the airport level. 
 
While the airport connectivity matrix provides information about the total number of connections 
associated with individual airports, not all airport connections carry equal weight in practice. A 
single connection to a large airport with many connections is ostensibly more important than a 
single connection to a small airport with few connections. For the purpose of developing a 
connectivity measure, therefore, a node (airport) within a network should carry greater 
importance if it is connected to other influential nodes. We incorporate this idea into our measure 
of airport connectivity, or airport centrality, by adopting the graph theoretical measure of 
eigenvector centrality. The eigenvector centrality analysis produces a measure of relative scores 

http://www.openflights.org/
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that can be used to rank the 3,316 airports in our dataset. The five top ranked airports align with 
what we might expect from such analysis:  Atlanta’s Hartsfield-Jackson International (ATL) 
takes the top ranking, followed by London Heathrow (LHR), Chicago’s O'Hare International 
Airport (ORD), John F. Kennedy International Airport (JFK) in New York, and Los Angeles 
International Airport (LAX). The distribution of the relative scores is highly skewed to the right, 
with a small number of very important airports with high scores and a large number of airports 
with low scores 
 
Relative scores are associated with the lat-long locations of airports. City-based airport scores 
were created for each of the 200 sample cities by adopting a gravity model formulation shown 
below: 

𝐶𝐶𝑖𝑖 = �
𝐴𝐴𝑗𝑗

�𝑑𝑑𝑖𝑖𝑗𝑗�
𝛽𝛽

𝑢𝑢

𝑗𝑗=1

 

 
where the city score 𝐶𝐶 for city 𝑑𝑑  is the sumproduct of the relative airport scores 𝐴𝐴 for airports 𝑗𝑗 
weighted by the inverse distance between city 𝑑𝑑 and airport 𝑗𝑗. Distance was calculated using the 
lat-long associated with a city’s CBD location. Thus the city-based airport scores for the 200 
sample cities incorporate the relative scores of all 3,316 airports. We experimented with different 
values for the 𝛽𝛽 term and decided to calibrate it using a ranking of cities developed by 
Globalization and World Cities (GaWC) research network (2018). We obtained very high 
correspondence between our ranking and GaWC’s: the highest ranking 40 cities by our method 
contained 84 percent (26 out of 31) of top ranked cities defined by GAWC. The high 
correspondence suggests that the city-based airport score may be a meaningful proxy for a global 
economic connectedness and the price that domestically produced export goods are likely to 
receive in global markets. There is evidence for this  
 
Agricultural Land 
 
Cultivated Land in the Expansion Area 
 
Spatially explicit data for land in agricultural use around is now available from global datasets 
produced by the National Geomatics Center of China (GlobeLand30) and the Global Food 
Security Analysis Support Data GFSASD), a project led by the United States Geological Service. 
When we undertook the analysis we were only aware of the Chinese dataset and learned of the 
GFSASD product when our analysis was nearly complete. The GlobeLand30 technical 
documentation states an accuracy of 83% for the cultivated land class. We are unaware of the 
accuracy of the GFSASD dataset or how using the two datasets might lead to different 
conclusions. 
 
The GL30 product is 30m resolution and contains information for nine land cover classes. The 
cultivated land class is described as “Lands for use in agriculture, horticulture, and gardens, 
including paddy fields, irrigated and dry farmland, vegetation and fruit gardens, etc…”  We 
downloaded data for the cultivated class for the entire planet and clipped the data by the 
expansion area boundaries used in the buildable land analysis. In Figure 47 below, we observe 
cultivated land in the expansion areas of Killeen, Texas on the left with only 3 percent of its 
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expansion area in cultivated land and Leon, Nicaragua on the right, where 83 percent of the land 
in the expansion area is in cultivation.      
 
Figure 47: Cultivated land in the expansion areas of Killeen, Texas (left) and Leon, 
Nicaragua (right).   
 

 
 
Buildable Land That Is Cultivated 
 
We determine the share of buildable land that is cultivated by combining information from the 
SRTM and GlobeLand30 datasets. From the buildable land analysis we identify all pixels within 
the expansion area that are neither built-up nor water. We assign these pixels a slope value. We 
determine which of these pixels is cultivated by resampling the cultivated land data to match the 
resolution and pixel grid associated with buildable land analysis. When we overlay the cultivated 
land data on the buildable land data, we obtain four class of non-built, non water pixels: (1) slope 
less than 15 percent cultivated, (2) slope less than 15 percent not cultivated, (3) slope greater 
than 15 percent cultivated, and (4) slope greater than 15 percent not cultivated.  
 
 
Agricultural Land per Capita 
 
Agricultural land refers to the land area that is under permanent crops, permanent pastures, or 
land that is arable. Approximately one third of agricultural land is arable land, defined by the 
Food and Agriculture Organization as land in temporary crops, temporary meadows, or land that 
is temporarily fallow.  Total agricultural land in the country was obtained from the World Bank’s 
World Development Indicators (WDI). We calculated 2014 per capita estimates using country 
population estimates from the WDI.    
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Value of Agricultural Land 
 
The statistical database of the Food and Agriculture Organization (FAOSTAT) contains 
information for the production value of agriculture which is disaggregated by agricultural item 
by country. Production value is defined as gross production in physical terms multiplied by 
output prices at the farm gate. A measure of the average value of a hectare of agricultural land 
within a country was calculated by dividing the total production value by the land in agricultural 
use.  
 
Building Regulations 
 
A companion project on the 200 city sample by the research team, The Land and Housing Survey 
in a Global Sample of Cities, involved the completion of surveys by local experts on the rules 
and regulations governing the development of new residential land and housing and their 
enforcement.  No single variable from the regulatory survey adequately summarizes the overall 
regulatory regime within a city. We tried creating new variables out of existing ones but these 
efforts proved unsuccessful for explaining urban extent and expansion. The variable we have 
chosen to use pertains to the subdivision of land on the urban periphery. More specifically, we 
use the typical time need to obtain the necessary permits for a 200-unit land subdivision on land 
already converted to urban use. Values range from a minimum of one month in Kampala, 
Uganda to 60 months in Taipei, Taiwan with an average value of 12 months for all 200 cities. 
This variable is used as a proxy for the regulatory red tape surrounding new development. 
 
Climate 
 
A revised Koppen-Geiger climate map was used to assign a climate classification to each of the 
sample cities (Peel Finlayson and McMahon 2007). While the Koppen-Geiger system contains as 
many as 29 sub-classifications of climate based on combinations of climate group, precipitation 
type, and heat level, we only assigned one of the five main climate groups: tropical, arid, 
temperate, continental, and polar to each sample city, based the intersection of the CBD point 
location with climate group boundaries.  
 
Gasoline Price and Vehicle Ownership 
 
In the absence of global data for local gasoline price prices at the city level, we relied on average 
national level per liter pump prices for 2014 from the World Bank’s WDI dataset. As the WDI 
contains price information for both gasoline and diesel prices, we attempted to construct a 
weighted average fuel price using information for the shares of a country’s passenger vehicle 
fleet that is gasoline vs. diesel based. We could not construct these shares for all countries owing 
to the limited public availability of necessary data. The International Energy Agency collects this 
information but does not make it freely available to researchers. A report by the Global Fuel 
Economy Initiative claims that gasoline vehicles represent the majority of cars sold in every 
country, except for a handful where diesel sales are higher, and Brazil, where flex fuel vehicles 
dominate (Fulton Jenn and Tal 2017). For this reason we chose to use the gasoline price.  
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Vehicles per thousand population, or the motorization rate, refers to all registered vehicles on the 
road in a country normalized by the country’s population. Motorization rates for 2014 were 
obtained from the International Organization of Motor Vehicle Manufacturers (OICA), which 
aggregates data from national trade organizations, OICA members, national statistics offices, and 
ministries of transport. The motorization rate calculation uses United Nations population 
estimates for countries.   
 
Model Result 
 
We tested our hypotheses using models where (1) observed urban extent, measured in hectares 
and corresponding to the most recent analysis period, and (2) the annualized urban extent growth 
rate between the T2 and T3 periods, being a normalized measure of urban expansion, were the 
two dependent variables. We employed log-log, or loglinear models, where both the dependent 
variables and the independent variables have been log transformed and the independent variables 
are linear in their parameters. This type of model specification allows for a clear and convenient 
interpretation of the regression coefficients. It is also called a constant elasticity model because 
the elasticity of the dependent variable with respect to the independent variable does not change 
as value of the independent variable changes. More precisely, the coefficients tell us about the 
percent change in the dependent variable when the independent variable increases by one 
percent.  
 
Output for models with urban extent and urban expansion as the dependent variable can be found 
in Tables 2 and 3 respectively. The estimated models are presented in a single column with blank 
spots indicating that a particular independent variable, listed in the left-hand column, has been 
excluded from that model’s particular specification. There are nine models of urban extent and 
five models of urban expansion. Parameter estimates are listed first, followed by the standard 
error of the estimate, followed by the associated p-value, indicating whether that variable was 
found to be a statistically significant predictor. Statistical significance at the 5 percent level is 
indicated with a single asterisk, and at the 1 percent level with three asterisks. 
 
Logarithmic Models of Urban Extent 
 
Different iterations of the model of urban extent are tied to different categories of variables and 
different hypotheses. Model 1 looks at population as the single explanatory factor. The finding is 
powerful as it suggests that urban extent is first and foremost a function of a cities populations 
The adjusted R-squared value of 0.75 reveals that variations in population explain 75 percent of 
the variation in urban extent. The parameter estimate of 0.85 can be interpreted as follows: a one 
percent increase in population is associated with 0.85 percent increase in urban extent, or 
alternatively, a 10 percent increase in population is associated with a 8.5 percent increase in 
urban extent, or a 100 percent increase in population is associated with an 85 percent increase in 
urban extent.  
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Model 2 introduces information for average income at the city level. The explanatory power of 
the model increases and with only two variables we can explain 85 percent of the variation in 
urban extent. A 10 percent increase in average income at the city level is associated with 5.4 
percent increase in urban extent. The relative contribution of population to explaining urban 
extent decreases slightly, a 10 percent increase in population is now associated with a 7.8 
increase in urban extent.  
 
Model 3 introduces geographic variables. There are 199 observations because we could calculate 
slope for St. Petersburg, Russia owing to SRTM data constraints. Adding information for the 
share of buildable land in a city’s expansion area as well as information for climate barely 
improves the model’s predictive power even though both are statistically significant. The 
direction of the sign on buildable land is as expected, namely when the share of buildable land 
increases by 10 percent, urban extent increases by 2.7 percent, all things being equal. We have 
used the 15 percent slope threshold to classify buildable land but it is likely that different 
thresholds would affect the parameter estimate. It is also possible that the area over which the 
buildable land ratio was calculated may be too large to capture the effect buildable land has on 
urban extent. We may experiment with different buildability thresholds and different sized 
analysis areas in the future to understand how topography influences urban extent and expansion. 
For the climate variable, we use the temperate climate category as the reference group. The 
interpretation of the coefficient is that all things being equal, cities in temperate climates have 34 
percent (e0.29 – 1) larger areas than cities in non-temperate zones. This finding is a little 
surprising as we expected tropical climates would be more hospitable to building and 
construction and would be associated with larger extents, all things being equal.  
 
The fourth model is composed of three submodels, 4.1, 4.2, and 4.3. that are all tied to 
agricultural hypotheses. Population and income are included but the geographic variables from 
model 3 have been excluded. If agricultural land exists on the periphery of the city, it creates 
competition for land between agricultural users and urban users. We first identify the share of 
buildable land in the expansion area that is cultivated. This variable combines information for 
buildable land as well as information about the area in agricultural use. All things being equal, 
we would expect that as the share of the area in cultivation increases, pressure against urban 
extent and expansion increases. Moreover, if the value of the area in cultivation is higher, 
namely, when the marginal productivity of agricultural land increases, we would expect even 
greater pressure against urban extent and expansion. We account for this by looking at the 
average value per hectare of agricultural land at the country level and dividing it by the city’s 
GDP per capita.  This is an estimate of how many average incomes it takes for a city dweller to 
purchase a hectare of agricultural land. When this ratio is low, agricultural land is relatively 
cheap and the influence of agricultural land should be less than when the ratio is high. If there is 
plentiful agricultural land in the country, however, measured as total agricultural land per capita, 
then perhaps neither the location of the agricultural land on the periphery of the city nor its 
average value matters much since agricultural uses can locate in many possible locations, thereby 
avoiding competition with urban uses. 
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Model 4.1 tests these three agricultural variables together, model 4.2 tests agricultural land per 
capita and the value of a hectare of agricultural land relative to average city income, and model 
4.3 tests agricultural land per capita only. In all three models, only agricultural land per capita is 
significant and the parameter estimates for this variable across all three models are similar: a 10 
percent increase in the agricultural land per capita at the country level is associated with a 3.2-3.4 
percent increase in urban extent. This finding supports the notion that the influence of 
agricultural land on urban extent occurs at a larger spatial scale than that of the city and its 
environs.  Replacing geographic variables with agricultural variables does not improve the 
model’s explanatory power. In model 4.1 the lack of spatially referenced data for cultivated land 
resulted in seven fewer observations.  
 
In model 5 we keep population and GDP per capita, remove geographic and agricultural 
variables, and include economic and policy variables. The airport score is a proxy for global 
economic connectedness. When the score increases we expect the economic profile of a city to 
increase, resulting in higher volumes of international trade and higher prices for domestically 
produced export goods. This should increase urban extent.  The building regulations variable is a 
proxy for rules and regulations governing land and housing. Higher values indicate more onerous 
regulations and greater opposing pressure against urban extent. The gas price variable is a 
measure of transportation cost, and all things being equal we expect that places with higher 
transportation cost to have smaller urban extents. Only the regulatory variable was found to be 
significant, but the expected direction of the sign is reversed making none of the economic and 
policy variables meaningful in this particular model specification. A lack of building regulation 
data in 15 cities resulted in a fewer number of observations.    
 
In Model 6, we test what happens when we remove the two variables with the strongest 
explanatory power. If population and GDP per capita alone explain 85 percent of the variation in 
urban extent, does that mean that other combinations of variables can explain at most 15 percent 
of observed variation? We include geographic, agricultural, economic and policy variables, and 
exclude population and GDP per capita. The model’s explanatory power is 39 percent. The 
airport score is significant, and all other variables are not. A 100 percent increase in the airport 
score is associated with a 32 percent increase in urban extent. The airport score is moderately 
correlated with GDP per capita, and we suspect this explains its statistical significance in this 
model but not in model 5. The sign on the gas price variable is negative, as expected, but it is not 
a significant predictor.  
 
The final model of urban extent, number 7 is a full test of all variables, including only 
agricultural land per capita as the sole agricultural variable. The model’s explanatory power of 
87.3 percent is only a 2.27 percent increase over a model that includes population and GDP per 
capita only.  Population, GDP per capita, climate, agricultural land per capita, and building 
regulations are all statistically significant. The parameter estimates for population and GDP per 
capita are similar to previous specifications; a 10 percent increase in population is associated 
with a 7.8 percent increase in urban extent and a 10 percent increase in GDP per capita is 
associated with a 4.9 percent increase in urban extent. A 10 percent increase in agricultural land 
per capita is associated with a 3.1 percent increase in urban extent. As in model 5, the expected 
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sign on building regulations is reversed. This may mean that the variable is not a good proxy for 
regulatory stringency or it may mean that stringent regulations on land and housing are not 
effective at limiting the outward expansion of urban areas. Indeed, that population and GDP 
alone explain 85 percent of the variation in urban extent strongly suggests that there is little to be 
explained by policy variables.  
 
Logarithmic Models of Urban Expansion 
 
As the dependent variable in models of urban expansion is the annualized urban extent growth 
rate between T2 and T3, we sought independent variables in terms of annualized growth rates 
over similar time periods to the extent this was possible. Apart from the population growth 
variable, which match the T2 and T3 dates exactly, growth rates for other independent variables, 
such as those at the country level, are based on observations at 2000 and 2014, the median dates 
of the T2 and T3 periods.  
 
Model 1 looks at the population growth rate as the sole explanatory factor. It is statistically 
significant and a 10 percent increase in the population growth rate is associated with a 12 percent 
increase in urban extent growth rate. The coefficient on the population growth variable suggests 
that urban extents are increasing at faster rates than their populations are increasing and confirms 
the trend we observed in the findings section. Population growth alone explains 64 percent of 
observed variation in the urban extent growth rate.  
 
Model 2 keeps the population growth rate and introduces economic variables, including the GDP 
per capita growth rate at the national level, the city GDP per capita at T3, and a dummy variable 
for if the city is in a developing country. We would have liked to have included the city GDP 
growth rate but we could not locate nor reasonably estimate year 2000 city GDP.  Only the 
national GDP growth rate is significant and a 10 percent increase in the growth rate is associated 
with 1.1 percent increase in the urban extent growth rate. As GDP per capita within a country 
increases over time we would expect the average citizen to have higher income, which would 
lead to higher rates of expansion. The level of GDP per capita in a city is not a significant 
predictor of the expansion rate. Whether a city is in a developed country does not appear to be a 
significant predictor of the expansion rate once the population growth rate and the country GPD 
growth rate are held constant. Developed versus developing country status may not be a 
statistically significant predictor as it is correlated with the population growth rate.  There is a 
practically negligible improvement in the explanatory power of this model over model 1.  
 
Model 3 keeps the variables from model 1 and 2 and adds buildable land in the expansion area 
and agricultural land per capita at the country level. Neither buildable land nor agricultural land 
per capita refer to change over time. We would expect to see lower expansion rates in places 
with less buildable land. We saw that urban extents are larger, all things being equal, in countries 
where there is more agricultural land per capita. We might take this to mean that agricultural 
land use exerts less pressure against urban extent and expansion in places where there is plentiful 
agricultural land. In other words, we would expect higher urban extent growth rates in places 
with more agricultural land per capita. When we look at the parameter estimates, the population 
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growth rate, the national GDP per capita growth rate remain significant. Agricultural land per 
capita is significant but its sign is in the opposite direction. The effect size is so small that we 
consider the finding insignificant for practical purposes, namely a 10 percent increase in the 
arable land per capita is associated with a 0.1% decrease in the expansion rate. Perhaps buildable 
land was found to be insignificant because the buildable land threshold and the buildable land 
analysis area are not capturing the true buildable land effect. There is a very small improvement 
in the explanatory power of the model, at 66.3 percent. 
 
Model 4 is the full specification that includes all explanatory variables. To the variables in model 
3 we add the growth rate in the average national per liter gas price, the growth rate in the 
motorization level, measured as vehicles per thousand, and the measure of regulatory stringency. 
The explanatory power of the model increases to 70 percent.  The population growth rate 
remains significant but the GDP per capita growth rate is now insignificant. In its place, the 
motorization growth rate is significant, and we suspect this is because the two are moderately 
correlated. As a country becomes wealthier, we would expect the vehicle ownership rate to 
increase. The parameter estimate for the motorization is very similar to the GDP per capita 
growth rate in iterations 2 and 3; namely, a 10 percent increase in the motorization rate is 
associated with a 1.8 percent increase in expansion rate. City GDP per capita at T3 is now 
significant, and the negative sign indicates that places with higher average incomes are 
associated with smaller expansion rates. Being a city in a developing country is also a found to 
be a significant predictor of the expansion rate and the positive sign indicates they are associated 
with higher expansion rates. The signs for these last two variables are in the expected direction 
but their effect size is so small that the findings are insignificant for practical purposes.  
 
Finally, in model 5, we test what happens if we remove information about change in population 
and change in GDP per capita. The model performs relatively poorly as expected, with an 
explanatory power of 32 percent. The motorization growth rate is the only significant variable 
and we suspect, as before, that it is acting as a proxy for change in income. Overall, the models 
of urban expansion show that changes in population and income are its key explanatory factors. 
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Table 1. Logarithmic Models of Urban Extent 
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Table 2. Logarithmic Models of Urban Expansion 

 

 

 

 

 

 

 

 

 

Estimate (SE), p-value
Variables Model 1 Model 2 Model 3 Model 4 Model 5

Intercept 0.008 (0.002), 0.002* 0.025 (0.022), 0.249 0.029 (0.024), 0.219 0.05 (0.024), 0.064 0.004 (0.010), 0.729
Log (Pop. Gr. Rt. T2-T3) 1.227 (0.066), <.0001*** 1.166 (0.074), <.0001*** 1.166 (0.073), <.0001*** 1.094 (0.076), <.0001***
Log (Country GDP/cap Gr. Rt. T2-T3) 0.112 (0.036), 0.002* 0.127 (0.036), 0.001* -0.004 (0.052), 0.939
Log (City GDP/cap T3) -0.001 (0.001), 0.206 -0.001 (0.001), 0.217 -0.002 (0.001), 0.031**
Developed 0.003 (0.004), 0.523 0.005 (0.004), 0.257 0.010 (0.005), 0.042*
Log (Buildable Land) -0.003 (0.010), 0.789 -0.002 (0.010), 0.817 0.020 (0.015), 0.174
Log (Agricultural Land per Cap) -0.010 (0.003), 0.004* -0.007 (0.004), 0.088 -0.007 (0.006), 0.220
Log (Gas Price Gr. Rt. T2-T3) -0.006 (0.051), 0.911 0.059 (0.075), 0.433
Log (Motorization Gr.Rt. T2-T3) 0.179 (0.057), 0.002** 0.366 (0.054), <.0001***
Log (Building Regulations) 0.004 (0.002), 0.081 0.004 (0.003), 0.137
No.Observations 200 196 195 175 175
Adjusted R-square 0.6364 0.6507 0.6627 0.7071 0.32
*<0.05  ***<0.001 
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Conclusion 
 

We now have up-to-date quantitative estimates for how rapidly cities have expanded outwards 
and how their populations changed over the 1990 – 2014 period. Our analysis yielded a number 
of important findings. We observed general trends that applied to all cities but we also noted that 
within these trends lay important differences that distinguished groups of cities from one another. 
 
Both average urban extent and average population growth rates have declined over time, from 
the 1990 – 2000 to the 2000 – 2014 period in all cities, in less developed country cities, and in 
more developed country cities. Actual growth rates in less developed cities and more developed 
cities were vastly different, however.  
 
The median and average urban extent growth rates in less developed cities were 5.7 percent per 
year and 6.2 percent per year for the 2000 – 2014 period compared to median and average rates 
of 1.1 percent per year and 1.8 percent per year in more developed country cities. If the median 
growth rate in less developed cities remains stable, we would expect half of the cities in less 
developed countries to at least double their areas in only 12 years. Making minimal preparations 
for land and infrastructure in advance of development in these cities would appear to be a most 
urgent task. 
 
Cities’ urban extents grew faster than their populations and this was true for both the 1990 – 
2000 and 2000 – 2014 time periods. The median and average population growth rates in less 
developed cities were 3.6 percent per year and 3.8 percent per year for the 2000 – 2014 period 
compared to median and average rates of 0.7 percent per year and 0.7 percent per year in more 
developed cities. Multiples are a convenient way to communicate the total change implied by 
annualized growth rates. Over the 2000 -2014 period, the median less developed city increased 
its area by a multiple of 2.2 but only increased its population by a multiple of 1.6.  Over the same 
period, the median more developed city increased its area by a multiple of 1.2 but only increased 
its population by a multiple of 1.1.  
 
SDG indicator 11.3.1 promotes the ratio of the land consumption rate to the population growth 
rate as a measure of the relationship between the urban extent growth rate and the population 
growth rate. We used a different but related measure. We focused on the average difference 
between the urban extent growth rate and the population growth rate and we can now provide 
estimates that inform the monitoring of this indicator. For all cities over the 2000 – 2014 period, 
the average difference between the urban extent growth rate and the population growth rate was 
2.1 percentage points. In less developed countries cities the average difference was higher, 2.4 
percentage points, while in more developed cities it was lower, 1.1 percentage points. When we 
measure the sample again in the future, we can compare the average differences to determine 
whether they different from each other, and if so, in what direction. 
 
While there are several potential factors that might explain how much area cities occupy and 
how the area they occupy changes over time, two factors dwarfed all others in their ability to 
explain the changes we observed in 200-city sample. Population and income alone explained 85 
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percent of the variation in urban extent and 65 percent of the variation in urban expansion. 
Simply put, population growth, and larger incomes that allow residents to consume more land, 
drive the differences we see. If income growth is an explicit development goal in less developed 
regions, then the combination of population growth and rising incomes less developed regions 
almost certainly implies a continuation of the outward expansion of cities.  
 
When this exercise is repeated in the future to update and improve the existing knowledge base, 
perhaps in support of monitoring SDG indicator 11.3.1, there will be a possibility to incorporate 
changes that enhance our understanding of urban extent and population growth in the world, in 
different world regions, and in different countries.  
 
The free, public availability of global time-series data for built-up area, such as the European 
Commission’s Global Human Settlement Built-up Grid (Pesaresi et al. 2015) eliminates the time 
and effort that was previously needed to classify Landsat imagery. This makes larger sample 
sizes that would yield more precise estimates much more feasible. The global built-up data also 
makes it possible to reverse engineer the creation of a universe of cities. Instead of gathering data 
to build up a universe of cities, it should be possible to apply our urban extent script to 
disaggregate the entire dataset into its component urban extents. We are currently experimenting 
with this.  
 
Completing the analysis also requires population data, and while there are new global population 
products that could be applied to such analyses (JRC CIESIN 2015; Worldpop 2018) our 
experiences have taught us that there is considerable variation in the reliability of small area 
estimates for the world at large. One of the benefits of working with a 200-city sample was that 
we could contact the relevant authorities, organizations, and experts in search of the most reliable 
local data, data that was not always included in national level datasets. This sort of detective 
works becomes more difficult when the sample size is larger, but improvements to population 
models and products, as well as the cooperation of national and local authorities for monitoring 
SDG indicator 11.3.1 will hopefully lead to reliable and readily available population data at 
geographical scales suited for city-based analyses. 
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Appendix A: Growth Rates 
 

Descriptive statics for growth rates, all cities 
 

 
 
Descriptive statics for growth rates, less developed country cities 
 

 
 
 
 
 

Statistic T1-T2 T2-T3 T1-T3 Diff. T2T3 - T1T2 T1-T2 T2-T3 T1-T3 Diff. T2T3 - T1T2 T1-T2 T2-T3 T1-T3
Nbr. of observations 200 200 200 200 200 200 200 200 200 200 200
Minimum 0.005 0.001 0.006 -0.326 -0.023 -0.017 -0.013 -0.331 -0.188 -0.030 -0.073
Maximum 0.339 0.180 0.207 0.133 0.413 0.136 0.223 0.082 0.122 0.127 0.090
1st Quartile 0.025 0.014 0.023 -0.038 0.013 0.009 0.014 -0.017 -0.001 0.000 0.001
Median 0.042 0.031 0.042 -0.010 0.030 0.022 0.029 -0.005 0.014 0.012 0.017
3rd Quartile 0.081 0.079 0.082 0.018 0.059 0.045 0.050 0.005 0.042 0.035 0.033
Mean 0.063 0.050 0.056 -0.012 0.047 0.030 0.038 -0.017 0.016 0.021 0.018
Lower 95 CI 0.055 0.044 0.050 -0.021 0.039 0.026 0.033 -0.025 0.010 0.017 0.014
Upper 95 CI 0.061 0.071 0.057 -0.004 0.056 0.034 0.043 -0.010 0.021 0.025 0.022
Variance (n-1) 0.003 0.002 0.002 0.003 0.004 0.001 0.001 0.003 0.001 0.001 0.001
Standard deviation (n-1) 0.057 0.046 0.042 0.059 0.060 0.029 0.036 0.056 0.038 0.029 0.026

Urban Extent Growth Rates Population Growth Rates Difference, UE Gr. Rt.- Pop. Gr. Rt.

Statistic T1-T2 T2-T3 T1-T3 Diff. T2T3 - T1T2 T1-T2 T2-T3 T1-T3 Diff. T2T3 - T1T2 T1-T2 T2-T3 T1-T3
Nbr. of observations 148 148 148 148 148 148 148 148 148 148 148
Minimum 0.009 0.002 0.009 -0.326 -0.023 -0.017 -0.003 -0.331 -0.188 -0.030 -0.073
Maximum 0.339 0.180 0.207 0.133 0.413 0.136 0.223 0.082 0.122 0.127 0.090
1st Quartile 0.029 0.019 0.034 -0.041 0.020 0.016 0.021 -0.029 -0.008 0.004 0.000
Median 0.055 0.057 0.060 -0.010 0.040 0.036 0.039 -0.008 0.015 0.015 0.019
3rd Quartile 0.102 0.087 0.089 0.027 0.067 0.053 0.068 0.008 0.044 0.049 0.036
Mean 0.074 0.062 0.067 -0.012 0.058 0.038 0.047 -0.021 0.016 0.024 0.020
Lower 95 CI 0.061 0.051 0.061 -0.023 0.046 0.031 0.041 -0.031 0.009 0.019 0.015
Upper 95 CI 0.087 0.073 0.073 -0.001 0.071 0.044 0.053 -0.010 0.023 0.030 0.024
Variance (n-1) 0.004 0.002 0.002 0.004 0.004 0.001 0.001 0.004 0.002 0.001 0.001
Standard deviation (n-1) 0.061 0.047 0.043 0.066 0.064 0.029 0.037 0.064 0.043 0.032 0.029

Urban Extent Growth Rates Population Growth Rates Difference, UE Gr. Rt.- Pop. Gr. Rt.
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Descriptive statics for growth rates, more developed country cities 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Statistic T1-T2 T2-T3 T1-T3 Diff. T2T3 - T1T2 T1-T2 T2-T3 T1-T3 Diff. T2T3 - T1T2 T1-T2 T2-T3 T1-T3
Nbr. of observations 52 52 52 52 52 52 52 52 52 52 52
Minimum 0.005 0.001 0.006 -0.099 -0.010 -0.016 -0.013 -0.086 -0.011 -0.011 -0.011
Maximum 0.118 0.062 0.080 0.053 0.097 0.048 0.067 0.025 0.069 0.048 0.034
1st Quartile 0.014 0.008 0.011 -0.027 0.000 0.001 0.001 -0.010 0.006 -0.001 0.004
Median 0.025 0.011 0.022 -0.010 0.013 0.007 0.013 -0.002 0.013 0.007 0.008
3rd Quartile 0.040 0.026 0.031 0.003 0.021 0.014 0.019 0.001 0.020 0.017 0.023
Mean 0.031 0.018 0.024 -0.013 0.016 0.007 0.011 -0.009 0.015 0.011 0.013
Lower 95 CI 0.026 0.015 0.020 -0.022 0.012 0.005 0.006 -0.015 0.011 0.007 0.010
Upper 95 CI 0.037 0.021 0.028 -0.005 0.020 0.010 0.015 -0.002 0.020 0.014 0.016
Variance (n-1) 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.000 0.000 0.000
Standard deviation (n-1) 0.026 0.016 0.015 0.029 0.026 0.015 0.017 0.022 0.016 0.014 0.012

Urban Extent Growth Rates Population Growth Rates Difference, UE Gr. Rt.- Pop. Gr. Rt.
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Appendix B: Multiples 
 
Descriptive statics for multiples, all cities 
 

 
 
 
Descriptive statistics for multiples, less developed country cities 
 

 
 
 
 
 
 
 
 

Statistic '90 - '00 '00 - '14 '90 - '14 '90 - '00 '00 - '14 '90 - '14 '90 - '00 '00 - '14 '90 - '14
Nbr. of observations 200 200 200 200 200 200 200 200 200
Minimum 0.93 0.94 1.15 0.80 0.79 0.74 -53.01 -1.04 -141.60
Maximum 29.75 12.38 97.35 62.48 6.68 187.34 20.14 10.27 80.20
1st Quartile 1.28 1.22 1.71 1.14 1.14 1.38 -0.04 0.00 0.13
Median 1.54 1.55 2.90 1.35 1.36 1.93 0.18 0.21 0.78
3rd Quartile 2.25 3.02 7.29 1.83 1.91 3.30 0.62 1.18 2.45
Mean 2.37 2.59 7.50 2.15 1.66 3.96 0.22 0.93 3.54
Lower 95 CI 2.02 2.27 5.46 1.69 1.54 2.74 -0.19 0.67 1.64
Upper 95 CI 2.73 2.91 9.53 2.62 1.78 5.18 0.64 1.19 5.44
Variance (n-1) 6.60 5.33 213.11 11.06 0.71 76.35 8.87 3.51 185.96
Standard deviation (n-1) 2.57 2.31 14.60 3.33 0.84 8.74 2.98 1.87 13.64

UE Multiple - Pop. MutiplePopulation MultiplesUrban Extent Multiples

Statistic '90 - '00 '00 - '14 '90 - '14 '90 - '00 '00 - '14 '90 - '14 '90 - '00 '00 - '14 '90 - '14
Nbr. of observations 148 148 148 148 148 148 148 148 148
Minimum 0.93 0.94 1.24 0.80 0.79 0.90 -53.01 -1.04 -141.60
Maximum 29.75 12.38 97.35 62.48 6.68 187.34 20.14 10.27 80.20
1st Quartile 1.34 1.30 2.21 1.23 1.25 1.68 -0.11 0.09 0.05
Median 1.74 2.21 4.25 1.52 1.64 2.56 0.20 0.28 1.32
3rd Quartile 2.80 3.39 8.53 1.96 2.10 5.11 0.85 1.55 4.56
Mean 2.71 3.05 9.52 2.49 1.85 4.88 0.23 1.20 4.64
Lower 95 CI 2.24 2.64 6.83 1.87 1.71 3.25 -0.34 0.85 2.08
Upper 95 CI 3.19 3.46 12.21 3.11 2.00 6.51 0.79 1.54 7.20
Variance (n-1) 8.47 6.42 274.67 14.59 0.80 100.69 12.05 4.48 248.73
Standard deviation (n-1) 2.91 2.53 16.57 3.82 0.90 10.03 3.47 2.12 15.77

Urban Extent Multiples Population Multiples UE Multiple - Pop. Mutiple
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Descriptive statistics for multiples, more developed country cities 
 

 
 

Statistic '90 - '00 '00 - '14 '90 - '14 '90 - '00 '00 - '14 '90 - '14 '90 - '00 '00 - '14 '90 - '14
Nbr. of observations 52 52 52 52 52 52 52 52 52
Minimum -0.16 -0.19 -0.37 0.88 0.80 0.74 -0.16 -0.19 -0.37
Maximum 1.67 1.18 2.44 2.70 1.96 4.87 1.67 1.18 2.44
1st Quartile 0.06 -0.01 0.13 1.00 0.90 1.04 0.06 -0.01 0.13
Median 0.15 0.14 0.29 1.14 1.10 1.35 0.15 0.14 0.29
3rd Quartile 0.22 0.25 0.59 1.25 1.22 1.58 0.22 0.25 0.59
Mean 0.21 0.19 0.48 1.22 1.13 1.42 0.21 0.19 0.48
Lower 95 CI 1.30 1.22 1.64 1.11 1.06 1.22 0.13 0.10 0.32
Upper 95 CI 1.56 1.42 2.15 1.33 1.21 1.61 0.29 0.27 0.64
Variance (n-1) 0.08 0.09 0.32 0.16 0.07 0.48 0.08 0.09 0.32
Standard deviation (n-1) 0.29 0.30 0.57 0.40 0.27 0.69 0.29 0.30 0.57

Urban Extent Multiples Population Multiples UE Multiple - Pop. Mutiple
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Appendix C: Extreme Urban Extent Multiple Examples 
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